Direkt zum Inhalt
StartseitePython

Feature Engineering for NLP in Python

Learn techniques to extract useful information from text and process them into a format suitable for machine learning.

Kurs Kostenlos Starten
4 Stunden15 Videos52 Übungen25.042 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

In this course, you will learn techniques that will allow you to extract useful information from text and process them into a format suitable for applying ML models. More specifically, you will learn about POS tagging, named entity recognition, readability scores, the n-gram and tf-idf models, and how to implement them using scikit-learn and spaCy. You will also learn to compute how similar two documents are to each other. In the process, you will predict the sentiment of movie reviews and build movie and Ted Talk recommenders. Following the course, you will be able to engineer critical features out of any text and solve some of the most challenging problems in data science!
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Natürliche Sprachverarbeitung in Python

Gehe zu Track
  1. 1

    Basic features and readability scores

    Kostenlos

    Learn to compute basic features such as number of words, number of characters, average word length and number of special characters (such as Twitter hashtags and mentions). You will also learn to compute readability scores and determine the amount of education required to comprehend a piece of text.

    Kapitel Jetzt Abspielen
    Introduction to NLP feature engineering
    50 xp
    Data format for ML algorithms
    50 xp
    One-hot encoding
    100 xp
    Basic feature extraction
    50 xp
    Character count of Russian tweets
    100 xp
    Word count of TED talks
    100 xp
    Hashtags and mentions in Russian tweets
    100 xp
    Readability tests
    50 xp
    Readability of 'The Myth of Sisyphus'
    100 xp
    Readability of various publications
    100 xp
  2. 2

    Text preprocessing, POS tagging and NER

    In this chapter, you will learn about tokenization and lemmatization. You will then learn how to perform text cleaning, part-of-speech tagging, and named entity recognition using the spaCy library. Upon mastering these concepts, you will proceed to make the Gettysburg address machine-friendly, analyze noun usage in fake news, and identify people mentioned in a TechCrunch article.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Natürliche Sprachverarbeitung in Python

Gehe zu Track

Datensätze

Russian Troll TweetsMovie Overviews and TaglinesPreprocessed Movie ReviewsTED Talk TranscriptsReal and Fake News Headlines

Mitwirkende

Collaborator's avatar
Adrián Soto
Collaborator's avatar
Hillary Green-Lerman
Rounak Banik HeadshotRounak Banik

Data Scientist at Fractal Analytics

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Feature Engineering for NLP in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.