Direkt zum Inhalt
StartseiteR

Scalable Data Processing in R

Learn how to write scalable code for working with big data in R using the bigmemory and iotools packages.

Kurs Kostenlos Starten
4 Stunden15 Videos49 Übungen5.842 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Datasets are often larger than available RAM, which causes problems for R programmers since by default all the variables are stored in memory. You’ll learn tools for processing, exploring, and analyzing data directly from disk. You’ll also implement the split-apply-combine approach and learn how to write scalable code using the bigmemory and iotools packages. In this course, you'll make use of the Federal Housing Finance Agency's data, a publicly available data set chronicling all mortgages that were held or securitized by both Federal National Mortgage Association (Fannie Mae) and Federal Home Loan Mortgage Corporation (Freddie Mac) from 2009-2015.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Big Data mit R

Gehe zu Track
  1. 1

    Working with increasingly large data sets

    Kostenlos

    In this chapter, we cover the reasons you need to apply new techniques when data sets are larger than available RAM. We show that importing and exporting data using the base R functions can be slow and some easy ways to remedy this. Finally, we introduce the bigmemory package.

    Kapitel Jetzt Abspielen
    What is Scalable Data Processing?
    50 xp
    Why is your code slow?
    50 xp
    How does processing time vary by data size?
    100 xp
    Working with "Out-of-Core" Objects using the Bigmemory Project
    50 xp
    Reading a big.matrix object
    100 xp
    Attaching a big.matrix object
    100 xp
    Creating tables with big.matrix objects
    100 xp
    Data summary using bigsummary
    100 xp
    References vs. Copies
    50 xp
    Copying matrices and big matrices
    100 xp
  2. 2

    Processing and Analyzing Data with bigmemory

    Now that you've got some experience using bigmemory, we're going to go through some simple data exploration and analysis techniques. In particular, we'll see how to create tables and implement the split-apply-combine approach.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Big Data mit R

Gehe zu Track

Datensätze

Mortgage data (sample)

Mitwirkende

Collaborator's avatar
Sumedh Panchadhar
Collaborator's avatar
Richie Cotton
Michael Kane HeadshotMichael Kane

Assistant Professor at Yale University

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Scalable Data Processing in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.