Accéder au contenu principal
AccueilPython

Hyperparameter Tuning in Python

Learn techniques for automated hyperparameter tuning in Python, including Grid, Random, and Informed Search.

Commencer Le Cours Gratuitement
4 heures13 vidéos44 exercices19 669 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

As a data or machine learning scientist, building powerful machine learning models depends heavily on the set of hyperparameters used. But with increasingly complex models with lots of options, how do you efficiently find the best settings for your particular problem? The answer is hyperparameter tuning!

Hyperparameters vs. parameters

Gain practical experience using various methodologies for automated hyperparameter tuning in Python with Scikit-Learn.

Learn the difference between hyperparameters and parameters and best practices for setting and analyzing hyperparameter values. This foundation will prepare you to understand the significance of hyperparameters in machine learning models.

Grid search

Master several hyperparameter tuning techniques, starting with Grid Search. Using credit card default data, you will practice conducting Grid Search to exhaustively search for the best hyperparameter combinations and interpret the results.

You will be introduced to Random Search, and learn about its advantages over Grid Search, such as efficiency in large parameter spaces.​

Informed search

In the final part of the course, you will explore advanced optimization methods, such as Bayesian and Genetic algorithms.

These informed search techniques are demonstrated through practical examples, allowing you to compare and contrast them with uninformed search methods. By the end, you will have a comprehensive understanding of how to optimize hyperparameters effectively to improve model performance​.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste

Apprentissage automatique supervisé en Python

Aller à la piste
  1. 1

    Hyperparameters and Parameters

    Gratuit

    In this introductory chapter you will learn the difference between hyperparameters and parameters. You will practice extracting and analyzing parameters, setting hyperparameter values for several popular machine learning algorithms. Along the way you will learn some best practice tips & tricks for choosing which hyperparameters to tune and what values to set & build learning curves to analyze your hyperparameter choices.

    Jouez Au Chapitre Maintenant
    Introduction & 'Parameters'
    50 xp
    Parameters in Logistic Regression
    50 xp
    Extracting a Logistic Regression parameter
    100 xp
    Extracting a Random Forest parameter
    100 xp
    Introducing Hyperparameters
    50 xp
    Hyperparameters in Random Forests
    50 xp
    Exploring Random Forest Hyperparameters
    100 xp
    Hyperparameters of KNN
    100 xp
    Setting & Analyzing Hyperparameter Values
    50 xp
    Automating Hyperparameter Choice
    100 xp
    Building Learning Curves
    100 xp
  2. 2

    Grid search

    This chapter introduces you to a popular automated hyperparameter tuning methodology called Grid Search. You will learn what it is, how it works and practice undertaking a Grid Search using Scikit Learn. You will then learn how to analyze the output of a Grid Search & gain practical experience doing this.

    Jouez Au Chapitre Maintenant
  3. 3

    Random Search

    In this chapter you will be introduced to another popular automated hyperparameter tuning methodology called Random Search. You will learn what it is, how it works and importantly how it differs from grid search. You will learn some advantages and disadvantages of this method and when to choose this method compared to Grid Search. You will practice undertaking a Random Search with Scikit Learn as well as visualizing & interpreting the output.

    Jouez Au Chapitre Maintenant
  4. 4

    Informed Search

    In this final chapter you will be given a taste of more advanced hyperparameter tuning methodologies known as ''informed search''. This includes a methodology known as Coarse To Fine as well as Bayesian & Genetic hyperparameter tuning algorithms. You will learn how informed search differs from uninformed search and gain practical skills with each of the mentioned methodologies, comparing and contrasting them as you go.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste

Apprentissage automatique supervisé en Python

Aller à la piste

ensembles de données

Credit Card Defaults

collaborateurs

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Chester Ismay
Alex Scriven HeadshotAlex Scriven

Senior Data Scientist @ Atlassian

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Hyperparameter Tuning in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.