Accéder au contenu principal
AccueilR

Hyperparameter Tuning in R

Learn how to tune your model's hyperparameters to get the best predictive results.

Commencer Le Cours Gratuitement
4 heures14 vidéos47 exercices7 108 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

For many machine learning problems, simply running a model out-of-the-box and getting a prediction is not enough; you want the best model with the most accurate prediction. One way to perfect your model is with hyperparameter tuning, which means optimizing the settings for that specific model. In this course, you will work with the caret, mlr and h2o packages to find the optimal combination of hyperparameters in an efficient manner using grid search, random search, adaptive resampling and automatic machine learning (AutoML). Furthermore, you will work with different datasets and tune different supervised learning models, such as random forests, gradient boosting machines, support vector machines, and even neural nets. Get ready to tune!
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Scientifique en apprentissage automatique en R

Aller à la piste

Apprentissage automatique supervisé en R

Aller à la piste
  1. 1

    Introduction to hyperparameters

    Gratuit

    Why do we use the strange word "hyperparameter"? What makes it hyper? Here, you will understand what model parameters are, and why they are different from hyperparameters in machine learning. You will then see why we would want to tune them and how the default setting of caret automatically includes hyperparameter tuning.

    Jouez Au Chapitre Maintenant
    Parameters vs hyperparameters
    50 xp
    Model parameters vs. hyperparameters
    100 xp
    Hyperparameters in linear models
    50 xp
    What are the coefficients?
    100 xp
    Recap of machine learning basics
    50 xp
    Machine learning with caret
    100 xp
    Resampling schemes
    50 xp
    Hyperparameter tuning in caret
    50 xp
    Hyperparameters in Stochastic Gradient Boosting
    50 xp
    Changing the number of hyperparameters to tune
    100 xp
    Tune hyperparameters manually
    100 xp
  2. 2

    Hyperparameter tuning with caret

    In this chapter, you will learn how to tune hyperparameters with a Cartesian grid. Then, you will implement faster and more efficient approaches. You will use Random Search and adaptive resampling to tune the parameter grid, in a way that concentrates on values in the neighborhood of the optimal settings.

    Jouez Au Chapitre Maintenant
  3. 3

    Hyperparameter tuning with mlr

    Here, you will use another package for machine learning that has very convenient hyperparameter tuning functions. You will define a Cartesian grid or perform Random Search, as well as advanced techniques. You will also learn different ways to plot and evaluate models with different hyperparameters.

    Jouez Au Chapitre Maintenant
  4. 4

    Hyperparameter tuning with h2o

    In this final chapter, you will use h2o, another package for machine learning with very convenient hyperparameter tuning functions. You will use it to train different models and define a Cartesian grid. Then, You will implement a Random Search use stopping criteria. Finally, you will learn AutoML, an h2o interface which allows for very fast and convenient model and hyperparameter tuning with just one function.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Scientifique en apprentissage automatique en R

Aller à la piste

Apprentissage automatique supervisé en R

Aller à la piste

ensembles de données

Bc test dataBc train dataBreast cancer dataBreast cancer data origDatasets descriptionsKnowledge dataKnowledge origKnowledge test dataKnowledge train dataSeeds dataSeeds datasetSeeds test dataSeeds train dataVoters dataVoters origVoters test dataVoters train data

collaborateurs

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Hadrien Lacroix
Shirin  Elsinghorst (formerly Glander) HeadshotShirin Elsinghorst (formerly Glander)

Data Scientist @ codecentric

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Hyperparameter Tuning in R Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.