Skip to main content

How Chelsea FC Uses Analytics to Drive Matchday Success

Get behind the scenes at Chelsea FC with Federico Bettuzzi to see how data analytics informs tactical decision-making and driving match day success.

Nov 2022
View Transcript

Key Quotes

The big analysis project we did on set piece and open-play cross-optimization brought to life a lot of match data we were analyzing. We managed to make our analysis operational and made it work on an ongoing basis as an automated process that has led to tangible success on the pitch, especially as coaches are actively using it to make decisions in training and designing the best tactical setup for matches. I'm saying it has been successful on the pitch because, in both the 20-21 and 21-22 seasons, we have seen a dramatic improvement in set-piece performance and open-play cross performance from both a defensive point of view and an offensive point of view.

We have two main sources of data. First is the event data, which is the data of every single event that happens during a game. So, every pass, every shot, every bull carry, a  clearance interception, and even red cards and yellow cards from the referee. It’s any event that is relevant in a game of football. The other source of data we get, which has higher potential, is tracking data, which provides information about players, ball positioning, and speed throughout the game at 25 frames per second. So, essentially, for each second, you get 25 observations for the ball and for each player, which amounts to roughly 3 million rows per game.

Key Takeaways

1

Managers have a key role role in determining which data is prioritized and how that data is used

2

Chelsea’s data team uses two main sources: event data, which is every relevant action taken in a game, and tracking data, which provides information about players and ball positioning.

3

Chelsea’s data team chooses long-term projects based on what will result in regular usage by the team and how much time they have to ensure that the project is both effective and fully-functional when it is put in place.

About Federico Bettuzzi


Photo of Federico Bettuzzi
Guest
Federico Bettuzzi

Federico Bettuzzi is a Data Scientist at Chelsea FC, one of the top football clubs in the English Premier League. As a specialist in match analytics, Federico works with Chelsea’s first team to inform tactical decision-making during matches.


Photo of Richie Cotton
Host
Richie Cotton

Richie helps organizations get from a vague sense of "hey we ought to get better at using data" to having realistic plans to become successful data-driven organizations. He's been a data scientist since before it was called data science, and has written several books and created many DataCamp courses on the subject.

Related

How to Become a Data Scientist in 8 Steps

Find out everything you need to know about becoming a data scientist, and find out whether it’s the right career for you!

Jose Jorge Rodriguez Salgado

12 min

How to Become a Data Engineer in 2023: 5 Steps for Career Success

Discover how to become a data engineer and learn the essential skills. Develop your knowledge and portfolio to prepare for the data engineer interview.
Javier Canales Luna 's photo

Javier Canales Luna

17 min

How to Become a Data Analyst in 2023: 5 Steps to Start Your Career

Learn how to become a data analyst and discover everything you need to know about launching your career, including the skills you need and how to learn them.
Elena Kosourova 's photo

Elena Kosourova

18 min

How Data Science is Changing Soccer

With the Fifa 2022 World Cup upon us, learn about the most widely used data science use-cases in soccer.
Richie Cotton's photo

Richie Cotton

Sports Analytics: How Different Sports Use Data Analytics

Discover how sports analytics works and how different sports use data to provide meaningful insights. Plus, discover what it takes to become a sports data analyst.
Kurtis Pykes 's photo

Kurtis Pykes

13 min

Inside the Generative AI Revolution

Martin Musiol talks about the state of generative AI today, privacy and intellectual property concerns, the strongest use cases for generative AI, and what the future holds.

Adel Nehme's photo

Adel Nehme

32 min

See MoreSee More