Skip to main content
HomeCheat sheetsData Analysis

Data Quality Dimensions Cheat Sheet

In this cheat sheet, you'll learn about data quality dimensions, allowing you to ensure that your data is fit for purpose.
Mar 2023  · 3 min read

Data Quality Dimensions.png

Have this cheat sheet at your fingertips

Download PDF

What are Data Quality Dimensions?

Data Quality is a measurement of the degree to which data is fit for purpose. Good data quality generates trust in data. Data Quality Dimensions are a measurement of a specific attribute of a data's quality.

Completeness

Completeness measures the degree to which all expected records in a dataset are present. At a data element level, completeness is the degree to which all records have data populated when expected.

Group 427.png

Completeness Example

All records must have a value populated in the CustomerName field.

Group 409.png

Validity

Validity measures the degree to which the values in a data element are valid.

Group 428.png

Validity Example

  • CustomerBirthDate value must be a date in the past.
  • CustomerAccountType value must be either Loan or Deposit.
  • LatestAccountOpenDate value must be a date in the past.

Group 409 (1).png

Uniqueness

Uniqueness measures the degree to which the records in a dataset are not duplicated.

Group 2127.png

Uniqueness Example

All records must have a unique CustomerID and CustomerName.

Group 409 (2).png

Timeliness

Timeliness is the degree to which a dataset is available when expected and depends on service level agreements being set up between technical and business resources.

Group 2128.png

Timeliness Example

All records in the customer dataset must be loaded by the 9:00 am.

Group 2129.png

Consistency

Consistency is a data quality dimension that measures the degree to which data is the same across all instances of the data. Consistency can be measured by setting a threshold for how much difference there can be between two datasets.

Group 416 (1).png

Consistency Example

The count of records loaded today must be within +/- 5% of the count of records loaded yesterday.

Group 418.png

The count of records loaded today must be within +/- 5% of the count of records loaded yesterday.

Group 419.png

Accuracy

All records in the Customer Table must have accurate Customer Name, Customer Birthdate, and Customer Address fields when compared to the Tax Form.

Group 2127.jpg

Accuracy Example

All records in the Customer Table must have accurate Customer Name, Customer Birthdate, and Customer Address fields when compared to the Tax Form.

Screenshot 2023-02-17 at 11.39 1.png

Group 422.png

Related

Working with Pivot Tables in Excel

Learn how to organize rows and columns, add values, find the sum of a value, and apply filtering to select a subset of a given dataset. We’ll learn how to apply this in Excel with a retail dataset example.
Jess Ahmet's photo

Jess Ahmet

9 min

How to Create a Data Analyst Resume

In this article, we'll discuss how to create a data analyst resume that will get you hired.
Matt Crabtree's photo

Matt Crabtree

7 min

Gary Wolf- Dataframed 119.png

Data-Driven Thinking for Everyday Life

Gary Wolf talks about what The Quantified Self is, why self-tracking projects can be life-changing, how to get started with self-tracking, and how to connect with others.

Richie Cotton's photo

Richie Cotton

55 min

Reshaping Data with pandas in Python

Pandas DataFrames are commonly used in Python for data analysis, with observations containing values or variables related to a single object and variables representing attributes across all observations.
Richie Cotton's photo

Richie Cotton

Reshaping Data with tidyr in R

In this cheat sheet, you will learn how to reshape data with tidyr. From separating and combining columns, to dealing with missing data, you'll get the download on how to manipulate data in R.
Richie Cotton's photo

Richie Cotton

6 min

Top Techniques to Handle Missing Values Every Data Scientist Should Know

Explore various techniques to efficiently handle missing values and their implementations in Python.
Zoumana Keita 's photo

Zoumana Keita

15 min

See MoreSee More