Skip to main content
HomeAbout RLearn R

PCH in R Tutorial

In this tutorial, learn about plot character (PCH) in R.
Oct 2020  · 5 min read

Plot character or pch is the standard argument to set the character that will be plotted in a number of R functions.

Explanatory text can be added to a plot in several different forms, including axis labels, titles, legends, or a text added to the plot itself. Base graphics functions in R typically create axis labels by default, although these can be overridden through the argument xlab() that allows us to provide our own x-axis label and ylab() that allows us to provide our own y-axis label.

Some base graphics functions also provide default titles, but again, these can be overridden has we see here:

par(mfrow = c(1, 2))
plot(density(geyser$waiting), main = "Estimated density: \n Old Faithful waiting times")
PCH in R Tutorial

The plot on the left uses the default title returned by the density function, which tells us that the plot was generated by this function using its default options and also gives the R specification for the variable whose density we are plotting. In the right-hand plot, this default title has been overridden by specifying the optional argument main. Note that by including the return character, backslash n, we are creating a two-line title in this character string.

text() Function

Like the lines and points functions, text is a low-level graphics function that allows us to add explanatory text to the existing plot. To do this, we must specify the values for x and y, the coordinates on the plot where the text should appear, and labels, a character vector that specifies the text to be added.

text(x, y, adj)
PCH in R Tutorial

By default, the text added to the plot is centered at the specified x values, but the optional argument adj can be used to modify the alignment.

It is noted that the adj argument to the text() function determines the horizontal placement of the text, and it can take any value between 0 (left-justified text) and 1 (right-justified text). In fact, this argument can take values outside this range. That is, making this value negative causes the text to start to the right of the specified x position. Similarly, making adj greater than 1 causes the text to end to the left of the x position.

text(5, 28, "<-- Outliers [left-justified text at (5, 28)]", adj = 0)
text(65, 23, "[Right-justified text at (65, 23)]", adj = 1, col = "red")
text(5, 28, "[Centered text (default) at (31, 18)]", col = "blue")
PCH in R Tutorial

Fonts, Orientations, and Other Text Features

Below we see some of the ways the appearance of added text can be changed through optional arguments to the text function. By default, text is created horizontally across the page, but this can be changed with the srt argument, which specifies the angle of orientation with respect to the horizontal axis.

Next, the text in red angles upward as a result of specifying srt as the positive value 30 degrees, while the text in green angles downward by specifying srt equals -45.

We can also specify the color of the text with the col argument, and the red text shows that we can change the text size with the cex argument. By specifying cex = 1.2, we have specified the text to be 20% larger than normal.

The other text characteristic that has been modified in this example is the font, set by the font argument. The default value is font = 1, which specifies normal text, while font = 2 specifies boldface, font = 3 specifies italics, and font = 4 specifies both boldface and italics.


# "Inner city" with adjusted colour and rotation
text(350, 24, adj = 1, "Inner city? -->", srt = 30, font = 2, cex = 1.2, col = "red")

# "Suburbs" with adjusted colour and rotation
text(100, 15, "Suburbs? -->", srt = -45, font = 3, col = "green")

title("Text with varying orientations, fonts, sizes & colors")
PCH in R Tutorial

Adjusting Text Position, Size, and Font

In the following example, you will:

  • Create a plot of vs. Horsepower from the Cars93 data frame, with data represented as open circles (default pch).
  • Construct the variable index3 using the which() function that identifies the row numbers containing all 3-cylinder cars.
  • Use the points() function to overlay solid circles, pch = 16, on top of all points in the plot that represent 3-cylinder cars.
  • Use the text() function with the Make variable as before to add labels to the right of the 3-cylinder cars, but now use adj = 0.2 to move the labels further to the right, use the cex argument to increase the label size by 20 percent, and use the font argument to make the labels bold italic.
# Plot vs. Horsepower as open circles
plot(Cars93$Horsepower, Cars93$

# Create index3, pointing to 3-cylinder cars
index3 <- which(Cars93$Cylinders == 3)

# Highlight 3-cylinder cars as solid circles
       pch = 16)

# Add car names, offset from points, with larger bold text
     adj = -0.2, cex = 1.2, font = 4)

When we run the above code, it produces the following result:

PCH in R Tutorial

Try it for yourself.

To learn more about adding text to plots, please see this video from our course Data Visualization in R.

This content is taken from DataCamp’s Data Visualization in R course by Ronald Pearson.


R Courses

Certification available


Introduction to R

4 hr
Master the basics of data analysis in R, including vectors, lists, and data frames, and practice R with real data sets.
See DetailsRight Arrow
Start Course
See MoreRight Arrow

Data Science in Finance: Unlocking New Potentials in Financial Markets

Discover the role of data science in finance, shaping tomorrow's financial strategies. Gain insights into advanced analytics and investment trends.
 Shawn Plummer's photo

Shawn Plummer

9 min

5 Common Data Science Challenges and Effective Solutions

Emerging technologies are changing the data science world, bringing new data science challenges to businesses. Here are 5 data science challenges and solutions.
DataCamp Team's photo

DataCamp Team

8 min

Navigating R Certifications in 2024: A Comprehensive Guide

Explore DataCamp's R programming certifications with our guide. Learn about Data Scientist and Data Analyst paths, preparation tips, and career advancement.
Matt Crabtree's photo

Matt Crabtree

8 min

A Data Science Roadmap for 2024

Do you want to start or grow in the field of data science? This data science roadmap helps you understand and get started in the data science landscape.
Mark Graus's photo

Mark Graus

10 min

Data Storytelling and Visualization with Lea Pica from Present Beyond Measure

Richie and Lea cover the full picture of data presentation, how to understand your audience, leverage hollywood storytelling and much more.
Richie Cotton's photo

Richie Cotton

71 min

Introduction to DynamoDB: Mastering NoSQL Database with Node.js | A Beginner's Tutorial

Learn to master DynamoDB with Node.js in this beginner's guide. Explore table creation, CRUD operations, and scalability in AWS's NoSQL database.
Gary Alway's photo

Gary Alway

11 min

See MoreSee More