Error and Uncertainty in Google Sheets
Learn to distinguish real differences from random noise, and explore psychological crutches we use that interfere with our rational decision making.
Start Course for Free4 hours16 videos62 exercises8,079 learnersStatement of Accomplishment
Create Your Free Account
or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.Training 2 or more people?
Try DataCamp for BusinessLoved by learners at thousands of companies
Course Description
In a world where predictions shape our daily decisions, from choosing outfits based on weather forecasts to planning commutes with a glance at traffic conditions, understanding the accuracy and intricacies of predictions becomes paramount. Whether you're an individual making personal choices or someone steering the strategy of an entire organization into the future, questions about the reliability of predictions, the ability to foresee events, and the occasional inaccuracies in forecasts may have crossed your mind. If you've ever wondered why the weatherman seems to miss the mark, our illuminating online course on Error and Uncertainty is designed for you.
Unraveling the Fabric of Predictions
Dive into the fascinating realm of predictions in our Error and Uncertainty course, where you'll not only explore the accuracy of forecasts but also actively engage in making predictions yourself. Gain the skills to differentiate genuine patterns from random noise, equipping you with the tools to make informed decisions in the face of uncertainty. This course goes beyond the surface, delving into the psychological crutches that often cloud our rational decision-making processes. Whether you're examining patterns in Seattle crime data, predicting students' final grades, preventing traffic accidents in Nashville, or assessing the need for changes in a bakery's menu, you'll emerge from this course with a heightened ability to navigate the complexities of error and uncertainty.
Hands-On Learning for Practical Insight
Join us on a captivating learning journey as we guide you through real-world applications of error and uncertainty analysis. Through engaging exercises, you'll apply your newfound knowledge to predict outcomes, identify potential pitfalls, and enhance your decision-making capabilities. From decoding crime trends to forecasting academic performance and mitigating traffic risks, our course provides a dynamic learning experience that promises not only insight but also practical skills applicable in a variety of scenarios. Embrace the challenge of understanding error and uncertainty, and join a community of learners who are certain to find joy in unraveling the mysteries of predictions.
Training 2 or more people?
Get your team access to the full DataCamp platform, including all the features.In the following Tracks
Intermediate Google Sheets
Go To Track- 1
Defining error, uncertainty, and risk
FreeThe first chapter presents common terminology, introduces methods for determining significant differences between groups, and outlines the kinds of error and uncertainty involved. We will specifically look at Seattle crime data and evaluate crime rate differences between precincts and neighborhoods. This chapter will equip learners to identify threats to the validity and accuracy of their conclusions.
Defining error and uncertainty50 xpMeasures of central tendency100 xpCrime time100 xpIF functions50 xpExtracting UNIQUE() values100 xpBook 'em and count 'em100 xpAverages and IF conditions100 xpCounts with multiple criteria100 xpCorrelation50 xpRap sheet100 xpCorrelation preparation100 xpA (crimes) committed relationship100 xpStrong relationships50 xp - 2
Making accurate predictions
The second chapter outlines both rudimentary (e.g., moving average, seasonal average, yearly average) and more complicated methods (e.g., linear regression) for making predictions and outlines the kinds of error and uncertainty involved. We will specifically look at anonymized student grades data and evaluate the accuracy of our predictions for given students. Throughout the chapter, we will identify threats to the validity and accuracy of our predictions.
Making the grade50 xpWe all have our (central) tendencies100 xpVariable weights100 xpNow weight a minute100 xpLying in weights50 xpAdvanced prediction strategies50 xpWhat's in the FORECAST()?100 xpVariation in predictions100 xpSeems about right50 xpHow clear is your crystal ball?50 xpPrediction accuracy100 xpAbsolute deviation100 xpAverage absolute deviation100 xpStatistical significance50 xpSignificant differences100 xpSignificant differences of opinion50 xp - 3
Poking holes in predictions
Chapter 3 encourages learners to test the assumptions of their predictions using data on car crashes. Specifically, they will determine how to allocate resources to reduce injuries and fatalities from auto accidents. Learners will discuss the impact of outliers in prediction accuracy, evaluate the importance of normally distributed data in making predictions, employ consequence-likelihood matrices in risk management, and adapt psychological heuristics to discussions of numerical uncertainty and risk.
Outliers50 xpDown and outlier100 xpNo filter100 xpAddressing outliers100 xpSparklines50 xpCan't start a fire without a spark(line)100 xpThe max matters100 xpWhat's the worst that could happen?50 xpThere are consequences100 xpA likely story100 xpRisky business100 xpRisky business50 xpRandom numbers100 xpHow random100 xpBe fruitful and multiply100 xpRevisiting sparklines50 xp - 4
Case study: Should you change your bakery's menu?
The final chapter integrates all the previous lessons into a constructed-world scenario. Learners are tasked with updating the menu at their small business: the Risky Business Bakery. They need to figure out whether to add or drop menu items based on whether there are significant differences in sales by baked good; whether their predicted sales figures from their accountant are accurate.
A half-baked idea?50 xpHalf-baked ideas100 xpFalling on hearth times100 xpSummary statistics50 xpDo you know your muffins, man?50 xpChanging prices100 xpBread on the rise?100 xpPaying the price50 xpIs change on the menu?50 xpA recipe for change100 xpRain, rain, go away100 xpFed up50 xpReview: Are we certain now?50 xpAdding variation100 xpWin some, lose some100 xpJust t-testing100 xpWrap-up50 xp
Training 2 or more people?
Get your team access to the full DataCamp platform, including all the features.In the following Tracks
Intermediate Google Sheets
Go To Trackcollaborators
prerequisites
Introduction to Statistics in Google SheetsEvan Kramer
See MoreData Scientist
What do other learners have to say?
Join over 15 million learners and start Error and Uncertainty in Google Sheets today!
Create Your Free Account
or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.