course
Experimental Design in Python
Intermediate
Updated 12/2024Start course for free
Included for FreePremium or Teams
PythonProbability & Statistics4 hours14 videos47 exercises3,700 XP4,867Statement of Accomplishment
Create Your Free Account
or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.Training 2 or more people?
Try DataCamp for BusinessLoved by learners at thousands of companies
Course Description
Implement Experimental Design Setups
Learn how to implement the most appropriate experimental design setup for your use case. Learn about how randomized block designs and factorial designs can be implemented to measure treatment effects and draw valid and precise conclusions.Conduct Statistical Analyses on Experimental Data
Deep-dive into performing statistical analyses on experimental data, including selecting and conducting statistical tests, including t-tests, ANOVA tests, and chi-square tests of association. Conduct post-hoc analysis following ANOVA tests to discover precisely which pairwise comparisons are significantly different.Conduct Power Analysis
Learn to measure the effect size to determine the amount by which groups differ, beyond being significantly different. Conduct a power analysis using an assumed effect size to determine the minimum sample size required to obtain a required statistical power. Use Cohen's d formulation to measure the effect size for some sample data, and test whether the effect size assumptions used in the power analysis were accurate.Address Complexities in Experimental Data
Extract insights from complex experimental data and learn best practices for communicating findings to different stakeholders. Address complexities such as interactions, heteroscedasticity, and confounding in experimental data to improve the validity of your conclusions. When data doesn't meet the assumptions of parametric tests, you'll learn to choose and implement an appropriate nonparametric test.Prerequisites
Hypothesis Testing in Python1
Experimental Design Preliminaries
2
Experimental Design Techniques
3
Analyzing Experimental Data: Statistical Tests and Power
4
Advanced Insights from Experimental Complexity
Experimental Design in Python
Course Complete
Earn Statement of Accomplishment
Add this credential to your LinkedIn profile, resume, or CVShare it on social media and in your performance review
Included withPremium or Teams
Enroll nowFAQs
Join over 15 million learners and start Experimental Design in Python today!
Create Your Free Account
or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.