Skip to main content
HomePythonMonitoring Machine Learning in Python

Monitoring Machine Learning in Python

This course covers everything you need to know to build a basic machine learning monitoring system in Python

Start Course for Free
3 hours11 videos38 exercises

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
GroupTraining 2 or more people?Try DataCamp For Business

Loved by learners at thousands of companies


Course Description

Learn how to monitor your ML Models in Python

Monitoring machine learning models ensures the long-term success of your machine learning projects. Monitoring can be very complex, however, there are Python packages to help us understand how our models are performing, what data has changed that might have led to a drop in performance, and give us clues on what we need to do to get our models back on track. This course covers everything you need to know to build a basic monitoring system in Python, using the popular monitor package, nannyml.

Understand the optimal monitoring workflow

Model monitoring is not only about simply calculating model performance in production. Unfortunately, it is not that easy. Especially when labels are hard to come by. This course will teach you about the optimal monitoring workflow. It will ensure that you always catch model failures, avoid alert fatigue, and quickly get to the root of the issue.

Learn how to find the root cause of model performance issues

Another important component to model monitoring is root cause analysis. This course will dive into how to use data drift detection techniques to get to the root cause of model performance issues. You will learn how to use both univariate and multivariate data drift detection techniques to uncover potential root causes of model issues.
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more
Try DataCamp for BusinessFor a bespoke solution book a demo.

In the following Tracks

Machine Learning Engineer

Go To Track

Machine Learning in Production in Python

Go To Track
  1. 1

    Data Preparation and Performance Estimation

    Free

    In this chapter, you will be introduced to the NannyML library and its fundamental functions. Initially, you will learn the process of preparing raw data to create reference and analysis sets ready for production monitoring. As a practical example, you will investigate predicting the tip amount for taxi rides in New York. Toward the end of the chapter, you will also discover how to estimate the performance of the tip prediction model using NannyML.

    Play Chapter Now
    What is NannyML?
    50 xp
    Key features of NannyML
    50 xp
    Load the dataset
    100 xp
    Data preparation for NannyML
    50 xp
    Reference or analysis period?
    100 xp
    Loading and splitting the data
    100 xp
    Creating reference and analysis set
    100 xp
    Performance estimation
    50 xp
    Specify the algorithm and problem type
    50 xp
    Interpreting results
    50 xp
    CBPE and DLE workflow
    100 xp
    Performance estimation for tip prediction
    100 xp
  2. 2

    Monitoring Performance and Business Value

    In this chapter, you will be introduced to realized performance calculators used when ground truth becomes available. You will learn about the more advanced methods for handling results, including filtering, plotting, converting them to data frames, chunking, and establishing custom thresholds. Lastly, you'll apply this knowledge to calculate the business value of a model trained on the hotel booking dataset.

    Play Chapter Now
  3. 3

    Root Cause Analysis and Issue Resolution

    Having detected the performance degradation in the hotel booking model, you will now learn how to identify the underlying issue causing it. In this chapter, you will be introduced to multivariate and univariate drift detection methods. You will also learn how to identify data quality issues and how to address the underlying problems you detect.

    Play Chapter Now
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more

In the following Tracks

Machine Learning Engineer

Go To Track

Machine Learning in Production in Python

Go To Track

datasets

Green Taxi DatasetHotel Booking Analysis DatasetHotel Booking Reference Dataset

collaborators

Collaborator's avatar
George Boorman
Collaborator's avatar
Arne Warnke
Collaborator's avatar
Katerina Zahradova
Hakim Elakhrass HeadshotHakim Elakhrass

Co-founder and CEO of NannyML

Hakim is one of the co-founders of nannyML, one of the most popular open source machine learning model monitoring libraries. He has almost a decade of data science experience. Hakim holds a Masters Degree in Bioinformatics from the KU Leuven.
See More
Maciej Balawejder HeadshotMaciej Balawejder

Data Scientist at NannyML

Maciej is a data scientist at NannyML with a background in math and mechanical engineering.
See More

What do other learners have to say?

Join over 14 million learners and start Monitoring Machine Learning in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.