Skip to main content
HomeSpark

course

Machine Learning with PySpark

Advanced
Updated 12/2024
Learn how to make predictions from data with Apache Spark, using decision trees, logistic regression, linear regression, ensembles, and pipelines.
Start course for free

Included for FreePremium or Teams

SparkMachine Learning4 hours16 videos56 exercises4,550 XP23,999Statement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Group

Training 2 or more people?

Try DataCamp for Business

Loved by learners at thousands of companies

Course Description

Learn to Use Apache Spark for Machine Learning

Spark is a powerful, general purpose tool for working with Big Data. Spark transparently handles the distribution of compute tasks across a cluster. This means that operations are fast, but it also allows you to focus on the analysis rather than worry about technical details. In this course you'll learn how to get data into Spark and then delve into the three fundamental Spark Machine Learning algorithms: Linear Regression, Logistic Regression/Classifiers, and creating pipelines.

Build and Test Decision Trees

Building your own decision trees is a great way to start exploring machine learning models. You’ll use an algorithm called ‘Recursive Partitioning’ to divide data into two classes and find a predictor within your data that results in the most informative split of the two classes, and repeat this action with further nodes. You can then use your decision tree to make predictions with new data.

Master Logistic and Linear Regression in PySpark

Logistic and linear regression are essential machine learning techniques that are supported by PySpark. You’ll learn to build and evaluate logistic regression models, before moving on to creating linear regression models to help you refine your predictors to only the most relevant options.

By the end of the course, you’ll feel confident in applying your new-found machine learning knowledge, thanks to hands-on tasks and practice data sets found throughout the course.

Prerequisites

Introduction to PySparkSupervised Learning with scikit-learn
1

Introduction

Start Chapter
2

Classification

Start Chapter
3

Regression

Start Chapter
4

Ensembles & Pipelines

Start Chapter
Machine Learning with PySpark
Course
Complete

Earn Statement of Accomplishment

Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

Included withPremium or Teams

Enroll now

FAQs

Join over 15 million learners and start Machine Learning with PySpark today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.