Skip to main content
HomePython

Intermediate Regression with statsmodels in Python

4.5+
16 reviews
Intermediate

Learn to perform linear and logistic regression with multiple explanatory variables.

Start Course for Free
4 hours14 videos52 exercises10,847 learnersTrophyStatement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Group

Training 2 or more people?

Try DataCamp for Business

Loved by learners at thousands of companies


Course Description

Linear regression and logistic regression are the two most widely used statistical models and act like master keys, unlocking the secrets hidden in datasets. In this course, you’ll build on the skills you gained in "Introduction to Regression in Python with statsmodels", as you learn about linear and logistic regression with multiple explanatory variables. Through hands-on exercises, you’ll explore the relationships between variables in real-world datasets, Taiwan house prices and customer churn modeling, and more. By the end of this course, you’ll know how to include multiple explanatory variables in a model, discover how interactions between variables affect predictions, and understand how linear and logistic regression work.
For Business

Training 2 or more people?

Get your team access to the full DataCamp platform, including all the features.
DataCamp for BusinessFor a bespoke solution book a demo.

In the following Tracks

Statistics Fundamentals in Python

Go To Track
  1. 1

    Parallel Slopes

    Free

    Extend your linear regression skills to parallel slopes regression, with one numeric and one categorical explanatory variable. This is the first step towards conquering multiple linear regression.

    Play Chapter Now
    Parallel slopes linear regression
    50 xp
    Fitting a parallel slopes linear regression
    100 xp
    Interpreting parallel slopes coefficients
    100 xp
    Visualizing each explanatory variable
    100 xp
    Visualizing parallel slopes
    100 xp
    Predicting parallel slopes
    50 xp
    Predicting with a parallel slopes model
    100 xp
    Visualizing parallel slopes model predictions
    100 xp
    Manually calculating predictions
    100 xp
    Assessing model performance
    50 xp
    Comparing coefficients of determination
    100 xp
    Comparing residual standard error
    100 xp
For Business

Training 2 or more people?

Get your team access to the full DataCamp platform, including all the features.

In the following Tracks

Statistics Fundamentals in Python

Go To Track

datasets

Ad conversionCustomer churnTaiwan real estateFish measurement dataeBay auctions

collaborators

Collaborator's avatar
Richie Cotton
Collaborator's avatar
Maggie Matsui
Collaborator's avatar
Amy Peterson
Maarten Van den Broeck HeadshotMaarten Van den Broeck

Senior Content Developer at DataCamp

Maarten is an aquatic ecologist and teacher by training and a data scientist by profession. He is also a certified Power BI and Tableau data analyst. After his career as a PhD researcher at KU Leuven, he wished that he had discovered DataCamp sooner. He loves to combine education and data science to develop DataCamp courses. In his spare time, he runs a symphonic orchestra.
See More

Don’t just take our word for it

*4.5
from 16 reviews
56%
38%
6%
0%
0%
Sort by
  • Li D.
    17 days

    Great

  • Nikolaos C.
    2 months

    Excellent course. It delves deep into the details of all calculations involved and how to recreate them in python. This gives a great insight into the methodology.

  • Ana U.
    10 months

    This is an excellent course. The instructor and the content of the course are extraordinary. The exercises are challenging and are created to stimulate the desire to learn more about the topic. I learned and enjoyed a great deal.

  • Noel C.
    11 months

    The best teacher in DataCamp

  • Ildar K.
    about 1 year

    i hope that this course would help to furhter career, 10x!

"Great"

Li D.

"Excellent course. It delves deep into the details of all calculations involved and how to recreate them in python. This gives a great insight into the methodology."

Nikolaos C.

"This is an excellent course. The instructor and the content of the course are extraordinary. The exercises are challenging and are created to stimulate the desire to learn more about the topic. I learned and enjoyed a great deal."

Ana U.

Join over 15 million learners and start Intermediate Regression with statsmodels in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.