Skip to main content

Machine Learning for Finance in Python

Learn to model and predict stock data values using linear models, decision trees, random forests, and neural networks.

Start Course for Free
4 Hours15 Videos59 Exercises22,952 Learners5150 XP

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.

Loved by learners at thousands of companies


Course Description

How to Predict Stock Prices with Machine Learning

Machine learning has a huge number of applications within the finance industry and is commonly used to predict stock values and maintain a strong stock portfolio. This course will teach you how to use Python to calculate technical indicators from historical stock data and create features and targets.

Build Your Knowledge of ML Models

Strong stock predictions start with good data preparation. You’ll learn how to prepare your financial data for ML algorithms and fit it into various models, including linear models, xgboost models, and neural network models.

The second chapter moves on to using Python decision trees to predict future values for your stock, and forest-based machine learning methods to enhance your predictions.

The second half of this course will cover how to scale your data for use in KNN and neural networks before using those tools to predict the future value of your stock. You’ll learn how to plot losses, measure performance, and visualize your prediction results.

Use the Sharpe Ratio to Build Your Ideal Portfolio

Machine learning can also help you find the optimal stock portfolio. You’ll learn how to use modern portfolio theory (MPT) and the Sharpe ratio as part of your process to predict the best portfolios. Once you’ve completed this course, you’ll also understand how to evaluate the performance of your machine learning-predicted portfolio.

You’ll use a variety of real-world data sets from NASDAQ and apply robust theories and techniques to them so that you can create your own predictions and optimize for your risk appetite and budget. "
  1. 1

    Preparing data and a linear model

    Free

    In this chapter, we will learn how machine learning can be used in finance. We will also explore some stock data, and prepare it for machine learning algorithms. Finally, we will fit our first machine learning model -- a linear model, in order to predict future price changes of stocks.

    Play Chapter Now
    Machine learning for finance
    50 xp
    Explore the data with some EDA
    100 xp
    Correlations
    100 xp
    Data transforms, features, and targets
    50 xp
    Create moving average and RSI features
    100 xp
    Create features and targets
    100 xp
    Check the correlations
    100 xp
    Linear modeling
    50 xp
    Create train and test features
    100 xp
    Fit a linear model
    100 xp
    Evaluate our results
    100 xp

Datasets

NASDAQ: AAPLNASDAQ: AMDQQQ ETFSPYLNGSMLV

Collaborators

dcamposliz
David Campos
chester
Chester Ismay
shoninouye
Shon Inouye
Nathan George Headshot

Nathan George

Assistant Professor of Data Science at Regis University

I teach and develop data science courses for Regis University's Master's in data science degree. I also do research with neural networks on EEG data. I spend some of my extra time applying neural nets to financial data in order to predict future prices of stocks and cryptocurrencies.
See More

What do other learners have to say?

Join over 10 million learners and start Machine Learning for Finance in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.