Skip to main content
HomePython

Marketing Analytics: Predicting Customer Churn in Python

Learn how to use Python to analyze customer churn and build a model to predict it.

Start Course for Free
4 hours13 videos45 exercises16,547 learnersTrophyStatement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Group

Training 2 or more people?

Try DataCamp for Business

Loved by learners at thousands of companies


Course Description

Churn is when a customer stops doing business or ends a relationship with a company. It’s a common problem across a variety of industries, from telecommunications to cable TV to SaaS, and a company that can predict churn can take proactive action to retain valuable customers and get ahead of the competition. This course will provide you with a roadmap to create your own customer churn models. You’ll learn how to explore and visualize your data, prepare it for modeling, make predictions using machine learning, and communicate important, actionable insights to stakeholders. By the end of the course, you’ll become comfortable using the pandas library for data analysis and the scikit-learn library for machine learning.
For Business

Training 2 or more people?

Get your team access to the full DataCamp platform, including all the features.
DataCamp for BusinessFor a bespoke solution book a demo.

In the following Tracks

Marketing Analytics in Python

Go To Track
  1. 1

    Exploratory Data Analysis

    Free

    Begin exploring the Telco Churn Dataset using pandas to compute summary statistics and Seaborn to create attractive visualizations.

    Play Chapter Now
    Welcome to the course
    50 xp
    Defining customer churn
    50 xp
    Exploring customer churn
    50 xp
    Grouping and summarizing data
    50 xp
    Summary statistics for both classes
    100 xp
    Churn by State
    100 xp
    Exploring your data using visualizations
    50 xp
    Exploring feature distributions
    100 xp
    Customer service calls and churn
    100 xp
  2. 2

    Preprocessing for Churn Modeling

    Having explored your data, it's now time to preprocess it and get it ready for machine learning. Learn the why, what, and how of preprocessing, including feature selection and feature engineering.

    Play Chapter Now
For Business

Training 2 or more people?

Get your team access to the full DataCamp platform, including all the features.

In the following Tracks

Marketing Analytics in Python

Go To Track

datasets

Telco Churn Dataset

collaborators

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Yashas Roy
Mark Peterson HeadshotMark Peterson

Senior Data Scientist at Alliance Data

Mark is a senior data scientist who holds degrees in Predictive Analytics, Agriculture Economics, and Animal Science. He has worked on a variety of big data and machine learning projects across the US and Latin America including customer churn, part failures, smart cities, and NLP. He's interested in using AI to improve business processes and lives.
See More

What do other learners have to say?

Join over 15 million learners and start Marketing Analytics: Predicting Customer Churn in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.