Skip to main content
HomePython

course

Parallel Programming with Dask in Python

Intermediate
Updated 12/2024
Learn how to use Python parallel programming with Dask to upscale your workflows and efficiently handle big data.
Start course for free

Included for FreePremium or Teams

PythonSoftware Development4 hours15 videos51 exercises4,150 XP3,915Statement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Group

Training 2 or more people?

Try DataCamp for Business

Loved by learners at thousands of companies

Course Description

Use Parallel Processing to Speed Up Your Python Code

With this 4-hour course, you’ll discover how parallel processing with Dask in Python can make your workflows faster.

When working with big data, you’ll face two common obstacles: using too much memory and long runtimes. The Dask library can lower your memory use by loading chunks of data only when needed. It can lower runtimes by using all your available computing cores in parallel. Best of all, it requires very few changes to your existing Python code.

Analyze Big Structured Data Using Dask DataFrames

In this course, you use Dask to analyze Spotify song data, process images of sign language gestures, calculate trends in weather data, analyze audio recordings, and train machine learning models on big data.

You’ll start by learning the basics of Dask, exploring how parallel processing in Python can speed up almost any code. Next, you’ll explore Dask DataFrames and arrays and how to use them to analyze big structured data.

Train machine learning models using Dask-ML

As you progress through the 51 exercises in this course, you’ll learn how to process any type of data, using Dask bags to work with unstructured and structured data. Finally, you’ll learn how to use Dask in Python to train machine learning models and improve your computing speeds.

Prerequisites

Data Manipulation with pandasPython Toolbox
1

Lazy Evaluation and Parallel Computing

Start Chapter
2

Parallel Processing of Big, Structured Data

Start Chapter
3

Dask Bags for Unstructured Data

Start Chapter
4

Dask Machine Learning and Final Pieces

Start Chapter
Parallel Programming with Dask in Python
Course
Complete

Earn Statement of Accomplishment

Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

Included withPremium or Teams

Enroll now

FAQs

Join over 15 million learners and start Parallel Programming with Dask in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.