Skip to main content
HomeR

project

Clustering Heart Disease Patient Data

Beginner
Updated 06/2024
Experiment with clustering algorithms to help doctors inform treatment for heart disease patients.
Start Project for Free

Included withPremium or Teams

10 Tasks1,500 XP4,194

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Group

Training 2 or more people?

Try DataCamp for Business

Project Description

Doctors frequently study former cases to learn how to best treat their patients. A patient who has a similar health history or symptoms to a previous patient could benefit from undergoing the same treatment. This project investigates whether doctors might be able to group together patients to target treatments using common unsupervised learning techniques. In this project you will use k-means and hierarchical clustering algorithms.

The dataset for this project contains characteristics of patients diagnosed with heart disease. It can be found here.

Project Tasks

  1. 1
    Targeting treatment for heart disease patients
  2. 2
    Quantifying patient differences
  3. 3
    Let's start grouping patients
  4. 4
    Another round of k-means
  5. 5
    Comparing patient clusters
  6. 6
    Hierarchical clustering: another clustering approach
  7. 7
    Hierarchical clustering round two
  8. 8
    Comparing clustering results
  9. 9
    Visualizing the cluster contents
  10. 10
    Conclusion

Technologies

R R

Topics

Data ManipulationData VisualizationMachine Learning
Megan Robertson HeadshotMegan Robertson

Data Scientist

Megan Robertson is a data scientist with a background in machine learning and Bayesian statistics. She earned a Master's of Statistical Science from Duke University and has multiple years of experience teaching math and statistics. She is interested in sports analytics and interned with the Charlotte Hornets while in graduate school.
See More

FAQs

What do other learners have to say?