Accéder au contenu principal
AccueilPython

Advanced NLP with spaCy

Learn how to use spaCy to build advanced natural language understanding systems, using both rule-based and machine learning approaches.

Commencer Le Cours Gratuitement
5 heures15 vidéos55 exercices20 461 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

If you're working with a lot of text, you'll eventually want to know more about it. For example, what's it about? What do the words mean in context? Who is doing what to whom? What companies and products are mentioned? Which texts are similar to each other? In this course, you'll learn how to use spaCy, a fast-growing industry standard library for NLP in Python, to build advanced natural language understanding systems, using both rule-based and machine learning approaches.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.
  1. 1

    Finding words, phrases, names and concepts

    Gratuit

    This chapter will introduce you to the basics of text processing with spaCy. You'll learn about the data structures, how to work with statistical models, and how to use them to predict linguistic features in your text.

    Jouez Au Chapitre Maintenant
    Introduction to spaCy
    50 xp
    Getting Started
    100 xp
    Documents, spans and tokens
    100 xp
    Lexical attributes
    100 xp
    Statistical models
    50 xp
    Model packages
    50 xp
    Loading models
    100 xp
    Predicting linguistic annotations
    100 xp
    Predicting named entities in context
    100 xp
    Rule-based matching
    50 xp
    Using the Matcher
    100 xp
    Writing match patterns
    100 xp
  2. 2

    Large-scale data analysis with spaCy

    In this chapter, you'll use your new skills to extract specific information from large volumes of text. You'll learn how to make the most of spaCy's data structures, and how to effectively combine statistical and rule-based approaches for text analysis.

    Jouez Au Chapitre Maintenant
  3. 3

    Processing Pipelines

    This chapter will show you to everything you need to know about spaCy's processing pipeline. You'll learn what goes on under the hood when you process a text, how to write your own components and add them to the pipeline, and how to use custom attributes to add your own meta data to the documents, spans and tokens.

    Jouez Au Chapitre Maintenant
  4. 4

    Training a neural network model

    In this chapter, you'll learn how to update spaCy's statistical models to customize them for your use case – for example, to predict a new entity type in online comments. You'll write your own training loop from scratch, and understand the basics of how training works, along with tips and tricks that can make your custom NLP projects more successful.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

collaborateurs

Collaborator's avatar
Mari Nazary
Collaborator's avatar
Adrián Soto

prérequis

Introduction to Natural Language Processing in Python
Ines Montani HeadshotInes Montani

spaCy core developer and co-founder of Explosion AI

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Advanced NLP with spaCy Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.