Accéder au contenu principal
AccueilPython

Writing Efficient Python Code

Learn to write efficient code that executes quickly and allocates resources skillfully to avoid unnecessary overhead.

Commencer Le Cours Gratuitement
4 heures15 vidéos52 exercices124 988 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

As a Data Scientist, the majority of your time should be spent gleaning actionable insights from data -- not waiting for your code to finish running. Writing efficient Python code can help reduce runtime and save computational resources, ultimately freeing you up to do the things you love as a Data Scientist. In this course, you'll learn how to use Python's built-in data structures, functions, and modules to write cleaner, faster, and more efficient code. We'll explore how to time and profile code in order to find bottlenecks. Then, you'll practice eliminating these bottlenecks, and other bad design patterns, using Python's Standard Library, NumPy, and pandas. After completing this course, you'll have the necessary tools to start writing efficient Python code!
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Certification disponible

Ingénieur de données en Python

Aller à la piste

Programmation Python

Aller à la piste
  1. 1

    Foundations for efficiencies

    Gratuit

    In this chapter, you'll learn what it means to write efficient Python code. You'll explore Python's Standard Library, learn about NumPy arrays, and practice using some of Python's built-in tools. This chapter builds a foundation for the concepts covered ahead.

    Jouez Au Chapitre Maintenant
    Welcome!
    50 xp
    Pop quiz: what is efficient
    50 xp
    A taste of things to come
    100 xp
    Zen of Python
    50 xp
    Building with built-ins
    50 xp
    Built-in practice: range()
    100 xp
    Built-in practice: enumerate()
    100 xp
    Built-in practice: map()
    100 xp
    The power of NumPy arrays
    50 xp
    Practice with NumPy arrays
    100 xp
    Bringing it all together: Festivus!
    100 xp
  2. 2

    Timing and profiling code

    In this chapter, you will learn how to gather and compare runtimes between different coding approaches. You'll practice using the line_profiler and memory_profiler packages to profile your code base and spot bottlenecks. Then, you'll put your learnings to practice by replacing these bottlenecks with efficient Python code.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Certification disponible

Ingénieur de données en Python

Aller à la piste

Programmation Python

Aller à la piste

ensembles de données

Baseball statistics

collaborateurs

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Logan Thomas HeadshotLogan Thomas

Scientific Software Technical Trainer, Enthought

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Writing Efficient Python Code Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.