Accéder au contenu principal
AccueilPython

cours

Reinforcement Learning with Gymnasium in Python

Avancé
Updated 12/2024
Start your reinforcement learning journey! Learn how agents can learn to solve environments through interactions.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

PythonIntelligence artificielle4 heures15 vidéos52 exercices4,400 XP3,957Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Discover the World of Reinforcement Learning

Embark on an exhilarating exploration of Reinforcement Learning (RL), a pivotal branch of machine learning. This interactive course takes you on a comprehensive journey through the core principles of RL where you'll master the art of training intelligent agents, teaching them to make strategic decisions and maximize rewards.

Master Essential Concepts and Tools

Your adventure starts with a deep dive into the unique aspects of RL. You'll not only learn foundational RL concepts but also apply key RL algorithms to practical scenarios using the renowned OpenAI Gym toolkit. This hands-on approach ensures a thorough grasp of RL essentials.

As your journey unfolds, you'll venture into the realms of advanced RL strategies to discover the intricacies of Monte Carlo methods, Temporal Difference Learning, and Q-Learning. By mastering these techniques in Python, you'll be adept at training agents for a variety of complex tasks.

Transform Your Learning into Real-World Impact

Concluding this course, you'll emerge with a profound understanding of RL theory, equipped with the skills to apply it creatively in real-world contexts. You'll be ready to build RL models in Python, unlocking a world of possibilities in your projects and professional endeavors.

Conditions préalables

Supervised Learning with scikit-learnPython ToolboxIntroduction to NumPy
1

Introduction to Reinforcement Learning

Commencer le chapitre
2

Model-Based Learning

Commencer le chapitre
3

Model-Free Learning

Commencer le chapitre
4

Advanced Strategies in Model-Free RL

Commencer le chapitre
Reinforcement Learning with Gymnasium in Python
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Reinforcement Learning with Gymnasium in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.