Découvrez comment nettoyer des données en Python
La préparation des données est fondamentale : les scientifiques des données passent 80 % de leur temps à nettoyer et manipuler les données, et seulement 20 % de leur temps à les analyser. Le nettoyage des données est une étape essentielle pour tout scientifique des données, car l'analyse de données sales peut conduire à des conclusions inexactes.Dans ce cours, vous apprendrez à identifier, diagnostiquer et traiter divers problèmes de nettoyage de données en Python, allant du plus simple au plus avancé. Vous traiterez les types de données inappropriés, vous vérifierez que vos données se situent dans la bonne plage, vous gérerez les données manquantes, vous effectuerez le couplage d'enregistrements, et bien plus encore !
Apprenez à nettoyer différents types de données
Le premier chapitre du cours explore les problèmes courants liés aux données et la manière dont vous pouvez les résoudre. Vous commencerez par comprendre les types de données de base et la manière de les traiter individuellement. Ensuite, vous appliquerez des contraintes de plage et supprimerez les points de données dupliqués.Le dernier chapitre explore le couplage d'enregistrements, un outil puissant permettant de fusionner plusieurs ensembles de données. Vous apprendrez à lier des enregistrements en calculant la similarité entre les chaînes de caractères. Enfin, vous utiliserez vos nouvelles compétences pour fusionner deux ensembles de données de critiques de restaurants en un seul ensemble de données principal propre.