Accéder au contenu principal
AccueilSpark

cours

Machine Learning with PySpark

Avancé
Updated 12/2024
Learn how to make predictions from data with Apache Spark, using decision trees, logistic regression, linear regression, ensembles, and pipelines.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

SparkMachine learning4 heures16 vidéos56 exercices4,550 XP24,001Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Learn to Use Apache Spark for Machine Learning

Spark is a powerful, general purpose tool for working with Big Data. Spark transparently handles the distribution of compute tasks across a cluster. This means that operations are fast, but it also allows you to focus on the analysis rather than worry about technical details. In this course you'll learn how to get data into Spark and then delve into the three fundamental Spark Machine Learning algorithms: Linear Regression, Logistic Regression/Classifiers, and creating pipelines.

Build and Test Decision Trees

Building your own decision trees is a great way to start exploring machine learning models. You’ll use an algorithm called ‘Recursive Partitioning’ to divide data into two classes and find a predictor within your data that results in the most informative split of the two classes, and repeat this action with further nodes. You can then use your decision tree to make predictions with new data.

Master Logistic and Linear Regression in PySpark

Logistic and linear regression are essential machine learning techniques that are supported by PySpark. You’ll learn to build and evaluate logistic regression models, before moving on to creating linear regression models to help you refine your predictors to only the most relevant options.

By the end of the course, you’ll feel confident in applying your new-found machine learning knowledge, thanks to hands-on tasks and practice data sets found throughout the course.

Conditions préalables

Introduction to PySparkSupervised Learning with scikit-learn
1

Introduction

Commencer le chapitre
2

Classification

Commencer le chapitre
4

Ensembles & Pipelines

Commencer le chapitre
Machine Learning with PySpark
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Machine Learning with PySpark Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.