Cleaning Data in R
Learn to clean data as quickly and accurately as possible to help you move from raw data to awesome insights.
Commencer Le Cours Gratuitement4 heures13 vidéos44 exercices52 112 apprenantsDéclaration de réalisation
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d'entreprises
Description du cours
Overcome Common Data Problems Like Removing Duplicates in R
It's commonly said that data scientists spend 80% of their time cleaning and manipulating data and only 20% of their time analyzing it. The time spent cleaning is vital since analyzing dirty data can lead you to draw inaccurate conclusions.In this course, you’ll learn a variety of techniques to help you clean dirty data using R. You’ll start by converting data types, applying range constraints, and dealing with full and partial duplicates to avoid double-counting.
Delve into Advanced Data Challenges
Once you’ve practiced working on common data issues, you’ll move on to more advanced challenges such as ensuring consistency in measurements and dealing with missing data. After every new concept, you’ll have the chance to complete a hands-on exercise to cement your knowledge and build your experience.Learn to Use Record Linkage During Data Cleaning
Record Linkage is used to merge datasets together when the values have issues such as typos or different spellings. You’ll explore this useful technique in the final chapter and practice the application by using it to join two restaurant review datasets together into a single dataset.Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Importation et nettoyage des données en R
Aller à la piste- 1
Common Data Problems
GratuitIn this chapter, you'll learn how to overcome some of the most common dirty data problems. You'll convert data types, apply range constraints to remove future data points, and remove duplicated data points to avoid double-counting.
- 2
Categorical and Text Data
Categorical and text data can often be some of the messiest parts of a dataset due to their unstructured nature. In this chapter, you’ll learn how to fix whitespace and capitalization inconsistencies in category labels, collapse multiple categories into one, and reformat strings for consistency.
- 3
Advanced Data Problems
In this chapter, you’ll dive into more advanced data cleaning problems, such as ensuring that weights are all written in kilograms instead of pounds. You’ll also gain invaluable skills that will help you verify that values have been added correctly and that missing values don’t negatively impact your analyses.
- 4
Record Linkage
Record linkage is a powerful technique used to merge multiple datasets together, used when values have typos or different spellings. In this chapter, you'll learn how to link records by calculating the similarity between strings—you’ll then use your new skills to join two restaurant review datasets into one clean master dataset.
Comparing strings50 xpCalculating distance50 xpSmall distance, small difference100 xpFixing typos with string distance100 xpGenerating and comparing pairs50 xpLink or join?100 xpPair blocking100 xpComparing pairs100 xpScoring and linking50 xpScore then select or select then score?100 xpPutting it together100 xpCongratulations!50 xp
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Importation et nettoyage des données en R
Aller à la pistecollaborateurs
prérequis
Joining Data with dplyrMaggie Matsui
Voir PlusCurriculum Manager at DataCamp
Qu’est-ce que les autres apprenants ont à dire ?
Inscrivez-vous 15 millions d’apprenants et commencer Cleaning Data in R Aujourd’hui!
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.