Accéder au contenu principal
AccueilPython

Cluster Analysis in Python

In this course, you will be introduced to unsupervised learning through techniques such as hierarchical and k-means clustering using the SciPy library.

Commencer Le Cours Gratuitement
4 heures14 vidéos46 exercices56 277 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

You have probably come across Google News, which automatically groups similar news articles under a topic. Have you ever wondered what process runs in the background to arrive at these groups? In this course, you will be introduced to unsupervised learning through clustering using the SciPy library in Python. This course covers pre-processing of data and application of hierarchical and k-means clustering. Through the course, you will explore player statistics from a popular football video game, FIFA 18. After completing the course, you will be able to quickly apply various clustering algorithms on data, visualize the clusters formed and analyze results.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste
  1. 1

    Introduction to Clustering

    Gratuit

    Before you are ready to classify news articles, you need to be introduced to the basics of clustering. This chapter familiarizes you with a class of machine learning algorithms called unsupervised learning and then introduces you to clustering, one of the popular unsupervised learning algorithms. You will know about two popular clustering techniques - hierarchical clustering and k-means clustering. The chapter concludes with basic pre-processing steps before you start clustering data.

    Jouez Au Chapitre Maintenant
    Unsupervised learning: basics
    50 xp
    Unsupervised learning in real world
    50 xp
    Pokémon sightings
    100 xp
    Basics of cluster analysis
    50 xp
    Pokémon sightings: hierarchical clustering
    100 xp
    Pokémon sightings: k-means clustering
    100 xp
    Data preparation for cluster analysis
    50 xp
    Normalize basic list data
    100 xp
    Visualize normalized data
    100 xp
    Normalization of small numbers
    100 xp
    FIFA 18: Normalize data
    100 xp
  2. 2

    Hierarchical Clustering

    This chapter focuses on a popular clustering algorithm - hierarchical clustering - and its implementation in SciPy. In addition to the procedure to perform hierarchical clustering, it attempts to help you answer an important question - how many clusters are present in your data? The chapter concludes with a discussion on the limitations of hierarchical clustering and discusses considerations while using hierarchical clustering.

    Jouez Au Chapitre Maintenant
  3. 3

    K-Means Clustering

    This chapter introduces a different clustering algorithm - k-means clustering - and its implementation in SciPy. K-means clustering overcomes the biggest drawback of hierarchical clustering that was discussed in the last chapter. As dendrograms are specific to hierarchical clustering, this chapter discusses one method to find the number of clusters before running k-means clustering. The chapter concludes with a discussion on the limitations of k-means clustering and discusses considerations while using this algorithm.

    Jouez Au Chapitre Maintenant
  4. 4

    Clustering in Real World

    Now that you are familiar with two of the most popular clustering techniques, this chapter helps you apply this knowledge to real-world problems. The chapter first discusses the process of finding dominant colors in an image, before moving on to the problem discussed in the introduction - clustering of news articles. The chapter concludes with a discussion on clustering with multiple variables, which makes it difficult to visualize all the data.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste

ensembles de données

FIFA sampleFIFAMovies

collaborateurs

Collaborator's avatar
Hillary Green-Lerman
Collaborator's avatar
Sara Billen
Shaumik Daityari HeadshotShaumik Daityari

Business Analyst at American Express

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Cluster Analysis in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.