Accéder au contenu principal
AccueilPython

Customer Analytics and A/B Testing in Python

Learn how to use Python to create, run, and analyze A/B tests to make proactive business decisions.

Commencer Le Cours Gratuitement
4 heures16 vidéos49 exercices31 398 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

The most successful companies today are the ones that know their customers so well that they can anticipate their needs. Customer analytics and in particular A/B Testing are crucial parts of leveraging quantitative know-how to help make business decisions that generate value. This course covers the ins and outs of how to use Python to analyze customer behavior and business trends as well as how to create, run, and analyze A/B tests to make proactive, data-driven business decisions.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Analyse marketing en Python

Aller à la piste
  1. 1

    Key Performance Indicators: Measuring Business Success

    Gratuit

    This chapter provides a brief introduction to the content that will be covered throughout the course before transitioning into a discussion of Key Performance Indicators or KPIs. You'll learn how to identify and define meaningful KPIs through a combination of critical thinking and leveraging Python tools. These techniques are all presented in a highly practical and generalizable way. Ultimately these topics serve as the core foundation for the A/B testing discussion that follows.

    Jouez Au Chapitre Maintenant
    Course introduction and overview
    50 xp
    Understanding the key components of an A/B test
    50 xp
    Defining meaningful KPIs
    50 xp
    Identifying and understanding KPIs
    50 xp
    Loading & examining our data
    100 xp
    Merging on different sets of fields
    100 xp
    Exploratory analysis of KPIs
    50 xp
    Practicing aggregations
    100 xp
    Grouping & aggregating
    100 xp
    Calculating KPIs - a practical example
    50 xp
    Calculating KPIs
    100 xp
    Average purchase price by cohort
    100 xp
  2. 2

    Exploring and Visualizing Customer Behavior

    This chapter teaches you how to visualize, manipulate, and explore KPIs as they change over time. Through a variety of examples, you'll learn how to work with datetime objects to calculate metrics per unit time. Then we move to the techniques for how to graph different segments of data, and apply various smoothing functions to reveal hidden trends. Finally we walk through a complete example of how to pinpoint issues through exploratory data analysis of customer data. Throughout this chapter various functions are introduced and explained in a highly generalizable way.

    Jouez Au Chapitre Maintenant
  3. 3

    The Design and Application of A/B Testing

    In this chapter you will dive fully into A/B testing. You will learn the mathematics and knowledge needed to design and successfully plan an A/B test from determining an experimental unit to finding how large a sample size is needed. Accompanying this will be an introduction to the functions and code needed to calculate the various quantities associated with a statistical test of this type.

    Jouez Au Chapitre Maintenant
  4. 4

    Analyzing A/B Testing Results

    After running an A/B test, you must analyze the data and then effectively communicate the results. This chapter begins by interleaving the theory of statistical significance and confidence intervals with the tools you need to calculate them yourself from the data. Next we discuss how to effectively visualize and communicate these results. This chapter is the culmination of all the knowledge built over the entire course.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Analyse marketing en Python

Aller à la piste

ensembles de données

Customer datasetIn-App Purchases datasetDaily Revenue datasetUser Demographics Paywall datasetAB Testing Results

collaborateurs

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Yashas Roy
Collaborator's avatar
Eunkyung Park
Ryan Grossman HeadshotRyan Grossman

Data Scientist at EDO Inc.

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Customer Analytics and A/B Testing in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.