Accéder au contenu principal
AccueilArtificial Intelligence

cours

Deep Reinforcement Learning in Python

Avancé
Updated 12/2024
Learn and use powerful Deep Reinforcement Learning algorithms, including refinement and optimization techniques.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

PyTorchIntelligence artificielle4 heures15 vidéos49 exercices4,050 XPDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Discover the cutting-edge techniques that empower machines to learn and interact with their environments. You will dive into the world of Deep Reinforcement Learning (DRL) and gain hands-on experience with the most powerful algorithms driving the field forward. You will use PyTorch and the Gymnasium environment to build your own agents.

Master the Fundamentals of Deep Reinforcement Learning

Our journey begins with the foundations of DRL and their relationship to traditional Reinforcement Learning. From there, we swiftly move on to implementing Deep Q-Networks (DQN) in PyTorch, including advanced refinements such as Double DQN and Prioritized Experience Replay to supercharge your models. Take your skills to the next level as you explore policy-based methods. You will learn and implement essential policy-gradient techniques such as REINFORCE and Actor-Critic methods.

Use Cutting-edge Algorithms

You will encounter powerful DRL algorithms commonly used in the industry today, including Proximal Policy Optimization (PPO). You will gain practical experience with the techniques driving breakthroughs in robotics, game AI, and beyond. Finally, you will learn to optimize your models using Optuna for hyperparameter tuning. By the end of this course, you will have acquired the skills to apply these cutting-edge techniques to real-world problems and harness DRL's full potential!

Conditions préalables

Intermediate Deep Learning with PyTorchReinforcement Learning with Gymnasium in Python
1

Introduction to Deep Reinforcement Learning

Commencer le chapitre
2

Deep Q-learning

Commencer le chapitre
3

Introduction to Policy Gradient Methods

Commencer le chapitre
4

Proximal Policy Optimization and DRL Tips

Commencer le chapitre
Deep Reinforcement Learning in Python
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Deep Reinforcement Learning in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.