Accéder au contenu principal
AccueilR

Differential Expression Analysis with limma in R

Learn to use the Bioconductor package limma for differential gene expression analysis.

Commencer Le Cours Gratuitement
4 heures15 vidéos47 exercices7 107 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Functional genomic technologies like microarrays, sequencing, and mass spectrometry enable scientists to gather unbiased measurements of gene expression levels on a genome-wide scale. Whether you are generating your own data or want to explore the large number of publicly available data sets, you will first need to learn how to analyze these types of experiments. In this course, you will be taught how to use the versatile R/Bioconductor package limma to perform a differential expression analysis on the most common experimental designs. Furthermore, you will learn how to pre-process the data, identify and correct for batch effects, visually assess the results, and perform enrichment testing. After completing this course, you will have general analysis strategies for gaining insight from any functional genomics study.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Analyse des données génomiques en R

Aller à la piste
  1. 1

    Differential Expression Analysis

    Gratuit

    To begin, you'll review the goals of differential expression analysis, manage gene expression data using R and Bioconductor, and run your first differential expression analysis with limma.

    Jouez Au Chapitre Maintenant
    Differential expression analysis
    50 xp
    Applications of differential expression analysis
    50 xp
    Differential expression data
    50 xp
    Create a boxplot
    100 xp
    The ExpressionSet class
    50 xp
    Create an ExpressionSet object
    100 xp
    Create a boxplot with an ExpressionSet object
    100 xp
    The limma package
    50 xp
    Specify a linear model to compare 2 groups
    100 xp
    Test for differential expression between 2 groups
    100 xp
  2. 3

    Pre- and post-processing

    Now that you've learned how to perform differential expression tests, next you'll learn how to normalize and filter the feature data, check for technical batch effects, and assess the results.

    Jouez Au Chapitre Maintenant
  3. 4

    Case Study: Effect of Doxorubicin Treatment

    In this final chapter, you'll use your new skills to perform an end-to-end differential expression analysis of a study that uses a factorial design to assess the impact of the cancer drug doxorubicin on the hearts of mice with different genetic backgrounds.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Analyse des données génomiques en R

Aller à la piste

ensembles de données

Doxorubicin datasetLeukemia datasetHypoxia dataset

collaborateurs

Collaborator's avatar
David Campos
Collaborator's avatar
Shon Inouye
Collaborator's avatar
Richie Cotton
John Blischak HeadshotJohn Blischak

Postdoctoral Scholar at University of Chicago

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Differential Expression Analysis with limma in R Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.