Accéder au contenu principal
AccueilPython

cours

Dimensionality Reduction in Python

Intermédiaire
Updated 12/2024
Understand the concept of reducing dimensionality in your data, and master the techniques to do so in Python.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

PythonMachine learning4 heures16 vidéos58 exercices4,700 XP30,871Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

High-dimensional datasets can be overwhelming and leave you not knowing where to start. Typically, you’d visually explore a new dataset first, but when you have too many dimensions the classical approaches will seem insufficient. Fortunately, there are visualization techniques designed specifically for high dimensional data and you’ll be introduced to these in this course. After exploring the data, you’ll often find that many features hold little information because they don’t show any variance or because they are duplicates of other features. You’ll learn how to detect these features and drop them from the dataset so that you can focus on the informative ones. In a next step, you might want to build a model on these features, and it may turn out that some don’t have any effect on the thing you’re trying to predict. You’ll learn how to detect and drop these irrelevant features too, in order to reduce dimensionality and thus complexity. Finally, you’ll learn how feature extraction techniques can reduce dimensionality for you through the calculation of uncorrelated principal components.

Conditions préalables

Supervised Learning with scikit-learn
1

Exploring High Dimensional Data

Commencer le chapitre
2

Feature Selection I - Selecting for Feature Information

Commencer le chapitre
3

Feature Selection II - Selecting for Model Accuracy

Commencer le chapitre
4

Feature Extraction

Commencer le chapitre
Dimensionality Reduction in Python
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Dimensionality Reduction in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.