Accéder au contenu principal
AccueilPython

cours

End-to-End Machine Learning

Intermédiaire
Updated 12/2024
Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

PythonMachine learning4 heures16 vidéos56 exercices4,150 XP8,337Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Introduction to End-to-End Machine Learning

Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models with this comprehensive course. Through engaging, real-world examples and hands-on exercises, you'll learn to tackle complex data problems and build powerful ML models. By the end of this course, you'll be equipped with the skills needed to create, monitor, and maintain high-performing models that deliver actionable insights. Transform your machine learning expertise with this comprehensive, hands-on course and become an end-to-end ML pro!

Evaluate and Improve Your Model

Start by learning the essentials of exploratory data analysis (EDA) and data preparation - you'll clean and preprocess your data, ensuring it's ready for model training. Next, master the art of feature engineering and selection to optimize your models for real-world challenges; learn how to use the Boruta library for feature selection, log experiments with MLFlow, and fine-tune your models using k-fold cross-validation. Uncover the secrets of effective error metrics and diagnose overfitting, setting your models up for success.

Deploy and Monitor Your Model

You'll also explore the importance of feature stores and model registries in end-to-end ML frameworks. Learn how to deploy and monitor your model's performance over time using Docker and AWS. Understand the concept of data drift and how to detect it using statistical tests. Implement feedback loops, retraining, and labeling strategies to maintain your models' performance in the face of ever-changing data.

This course will equip you with practical skills directly applicable to a career as a data scientist or machine learning engineer, allowing you to design, deploy, and maintain models; crucial skills to leverage the business impact of machine learning solutions.

Conditions préalables

Supervised Learning with scikit-learnMLOps Concepts
1

Design and Exploration

Commencer le chapitre
2

Model Training and Evaluation

Commencer le chapitre
3

Model Deployment

Commencer le chapitre
4

Model Monitoring

Commencer le chapitre
End-to-End Machine Learning
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer End-to-End Machine Learning Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.