Accéder au contenu principal
AccueilPython

Feature Engineering for Machine Learning in Python

Create new features to improve the performance of your Machine Learning models.

Commencer Le Cours Gratuitement
4 heures16 vidéos53 exercices31 319 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Every day you read about the amazing breakthroughs in how the newest applications of machine learning are changing the world. Often this reporting glosses over the fact that a huge amount of data munging and feature engineering must be done before any of these fancy models can be used. In this course, you will learn how to do just that. You will work with Stack Overflow Developers survey, and historic US presidential inauguration addresses, to understand how best to preprocess and engineer features from categorical, continuous, and unstructured data. This course will give you hands-on experience on how to prepare any data for your own machine learning models.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste
  1. 1

    Creating Features

    Gratuit

    In this chapter, you will explore what feature engineering is and how to get started with applying it to real-world data. You will load, explore and visualize a survey response dataset, and in doing so you will learn about its underlying data types and why they have an influence on how you should engineer your features. Using the pandas package you will create new features from both categorical and continuous columns.

    Jouez Au Chapitre Maintenant
    Why generate features?
    50 xp
    Getting to know your data
    100 xp
    Selecting specific data types
    100 xp
    Dealing with categorical features
    50 xp
    One-hot encoding and dummy variables
    100 xp
    Dealing with uncommon categories
    100 xp
    Numeric variables
    50 xp
    Binarizing columns
    100 xp
    Binning values
    100 xp
  2. 2

    Dealing with Messy Data

    This chapter introduces you to the reality of messy and incomplete data. You will learn how to find where your data has missing values and explore multiple approaches on how to deal with them. You will also use string manipulation techniques to deal with unwanted characters in your dataset.

    Jouez Au Chapitre Maintenant
  3. 4

    Dealing with Text Data

    Finally, in this chapter, you will work with unstructured text data, understanding ways in which you can engineer columnar features out of a text corpus. You will compare how different approaches may impact how much context is being extracted from a text, and how to balance the need for context, without too many features being created.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Scientifique en apprentissage automatique en Python

Aller à la piste

ensembles de données

Stack Overflow Survey Responses (Modified)US Presidential Inauguration Addresses

collaborateurs

Collaborator's avatar
Sumedh Panchadhar
Collaborator's avatar
Hillary Green-Lerman
Robert O'Callaghan HeadshotRobert O'Callaghan

Director of Data Science, Ordergroove

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Feature Engineering for Machine Learning in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.