Accéder au contenu principal
AccueilPython

Intermediate Python for Finance

Build on top of your Python skills for Finance, by learning how to use datetime, if-statements, DataFrames, and more.

Commencer Le Cours Gratuitement
4 heures15 vidéos52 exercices23 683 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Are you a financial or business analyst, or simply looking for an easier way to manage your stock portfolio? If so learning Python can automate financial tasks such as calculating risk, mapping market health, and visualizing a stock's price trends, saving you time and money. In this course, you’ll learn how to use Python data structures, execution control statements, and DataFrames to manipulate financial data. You will then work with pandas, using data from the Federal Reserve Bank, to explore national economic trends—an essential part of understanding investment strategies. You will also calculate risk based on stock price data, and display this data in easy to read plots. By the end of this course, you’ll be the new Python of Wall Street.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Principes fondamentaux de la finance en Python

Aller à la piste
  1. 1

    Datetimes and Dictionaries

    Gratuit

    In this chapter, you’ll learn how to create and manipulate Python datetime objects to help you identify key financial events, such as Black Friday. You’ll also learn how to store and efficiently look up items using Python dictionaries.

    Jouez Au Chapitre Maintenant
    Representing time with datetimes
    50 xp
    Creating datetimes for dates
    100 xp
    Datetimes from strings
    100 xp
    Converting format with datetimes
    100 xp
    Working with datetimes
    50 xp
    Accessing datetime attributes
    100 xp
    Comparing datetimes
    100 xp
    Making relative datetimes
    100 xp
    Dictionaries
    50 xp
    Creating and accessing dictionaries
    100 xp
    Accessing safely and deleting
    100 xp
  2. 3

    Pandas Dataframe

    Discover how to create and access DataFrames with pandas using financial data from other data structures, including Dicts, lists, and CSV files. You’ll then uncover additional insights, as you aggregate data across rows or columns, calculate averages, and extend your data using functions.

    Jouez Au Chapitre Maintenant
  3. 4

    Working with NASDAQ Stock Data

    In this final chapter, you’ll try your hand at working with real-world NASDAQ stock data as you learn how to interpret new data, create masks to filter data, and visualize your findings with plots.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Principes fondamentaux de la finance en Python

Aller à la piste

ensembles de données

Alphabet stock

collaborateurs

Collaborator's avatar
Adel Nehme
Kennedy Behrman HeadshotKennedy Behrman

Data Engineer, Author, Founder

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Intermediate Python for Finance Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.