Accéder au contenu principal
AccueilR

Intermediate Regular Expressions in R

Manipulate text data, analyze it and more by mastering regular expressions and string distances in R.

Commencer Le Cours Gratuitement
4 heures14 vidéos48 exercices4 176 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Analyzing data that comes in tables is fun. But what if the things that we find most interesting are not available as a neatly organized dataset but in plain text? Do not despair: In this course, you'll learn everything you need to know to create powerful regular expressions that will help you find all the information you need for your analyses from just a blob of text. But not only that. Using the concept of string distances, you will learn to work even with text that contains typos or scanning errors, as you will be able to match them to their correct counterparts from other data sources (record linkage). As a learning material, we will analyze real documents about box office figures in Swiss cinemas.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.
  1. 1

    Regular Expressions: Writing Custom Patterns

    Gratuit

    Regular expressions can be pretty intimidating at first as they contain vast amounts of special characters. In this chapter, you'll learn to decipher these and write your own patterns to find exactly what you're looking for.

    Jouez Au Chapitre Maintenant
    Welcome
    50 xp
    Starts with, ends with
    100 xp
    If you don't know what you're looking for
    100 xp
    Character classes and repetitions
    50 xp
    Digits, words and spaces
    100 xp
    Match repetitions
    100 xp
    Which special character did what again?
    100 xp
    The pipe and the question mark
    50 xp
    This or that
    100 xp
    The question mark and its two meanings
    100 xp
    You can now read this!
    50 xp
  2. 3

    Extracting Structured Data From Text

    One task where regular expressions really shine is making sense from a blob of text. In this chapter, you'll learn to extract the information from messy data that doesn't come in neatly arranged tables but in plain text.

    Jouez Au Chapitre Maintenant
  3. 4

    Similarities Between Strings

    In the last chapter, we will shift gears away from regular expressions to understanding string distances. By calculating the differences of multiple strings, we can match those that are similar. This will help us to find duplicates even when they contain small errors like typos. This is an important part to record linkage where we combine datasets from multiple sources.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

collaborateurs

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Adel Nehme

prérequis

Introduction to the TidyverseString Manipulation with stringr in R
Benja Zehr HeadshotBenja Zehr

Data Journalist

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Intermediate Regular Expressions in R Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.