Accéder au contenu principal
AccueilR

Introduction to Bioconductor in R

Learn to use essential Bioconductor packages for bioinformatics using datasets from viruses, fungi, humans, and plants!

Commencer Le Cours Gratuitement
4 heures14 vidéos54 exercices14 899 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Much of the biological research, from medicine to biotech, is moving toward sequence analysis. We are now generating targeted and whole genome big data, which needs to be analyzed to answer biological questions. To help you get started, you will be introduced to The Bioconductor project. Bioconductor is and builds the infrastructure to share software tools (packages), workflows and datasets for the analysis and comprehension of genomic data. Bioconductor is a great platform accessible to you, and it is a community developed open software resource. By the end of this course, you will be able to use essential Bioconductor packages and get a grasp of its infrastructure and some built-in datasets. Using BSgenome, Biostrings, IRanges, GenomicRanges, TxDB, ShortRead and Rqc with real datasets from different species is going to be an exceptional experience!
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Analyse des données génomiques en R

Aller à la piste
  1. 1

    What is Bioconductor?

    Gratuit

    In this chapter, you will get hands-on with Bioconductor. Bioconductor is the specialized repository for bioinformatics software, developed and maintained by the R community. You will learn how to install and use bioconductor packages. You'll be introduced to S4 objects and functions, because most packages within Bioconductor inherit from S4. Additionally, you will use a real genomic dataset of a fungus to explore the BSgenome package.

    Jouez Au Chapitre Maintenant
    Introduction to the Bioconductor Project
    50 xp
    Bioconductor version
    100 xp
    BiocManager to install packages
    100 xp
    The role of S4 in Bioconductor
    50 xp
    S4 class definition
    50 xp
    Interaction with classes
    100 xp
    Introducing biology of genomic datasets
    50 xp
    Discovering the yeast genome
    100 xp
    Partitioning the yeast genome
    100 xp
    Available genomes
    50 xp
  2. 2

    Biostrings and When to Use Them?

    Biostrings are memory efficient string containers. Biostring has matching algorithms, and other utilities, for fast manipulation of large biological sequences or sets of sequences. How efficient you can become by using the right containers for your sequences? You will learn about alphabets, and sequence manipulation by using the tiny genome of a virus.

    Jouez Au Chapitre Maintenant
  3. 3

    IRanges and GenomicRanges

    The IRanges and GenomicRanges packages are also containers for storing and manipulating genomic intervals and variables defined along a genome. These packages provide infrastructure and support to many other Bioconductor packages because of their enriching features. You will learn how to use these containers and their associated metadata, for manipulation of your sequences. The dataset you will be looking at is a special gene of interest in the human genome.

    Jouez Au Chapitre Maintenant
  4. 4

    Introducing ShortRead

    ShortRead is the package for input, manipulation and assessment of fasta and fastq files. You can subset, trim and filter the sequences of interest, and even do a report of quality. An extra bonus towards the last exercises will give you the tools for parallel quality assessment, wink, wink Rqc. Exciting enough, for this you will use plant genome sequences!

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Analyse des données génomiques en R

Aller à la piste

ensembles de données

Zika Genomic DNA datasetA. Thaliana Short Reads with Quality datasetHuman Gene & Transcript ID datasetYeast Genome dataset

collaborateurs

Collaborator's avatar
David Campos
Collaborator's avatar
Shon Inouye
Collaborator's avatar
Richie Cotton
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Introduction to Bioconductor in R Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.