Accéder au contenu principal
AccueilPython

Introduction to Linear Modeling in Python

Explore the concepts and applications of linear models with python and build models to describe, predict, and extract insight from data patterns.

Commencer Le Cours Gratuitement
4 heures16 vidéos59 exercices23 857 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

One of the primary goals of any scientist is to find patterns in data and build models to describe, predict, and extract insight from those patterns. The most fundamental of these patterns is a linear relationship between two variables. This course provides an introduction to exploring, quantifying, and modeling linear relationships in data, by demonstrating techniques such as least-squares, linear regression, estimatation, and bootstrap resampling. Here you will apply the most powerful modeling tools in the python data science ecosystem, including scipy, statsmodels, and scikit-learn, to build and evaluate linear models. By exploring the concepts and applications of linear models with python, this course serves as both a practical introduction to modeling, and as a foundation for learning more advanced modeling techniques and tools in statistics and machine learning.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.
  1. 1

    Exploring Linear Trends

    Gratuit

    We start the course with an initial exploration of linear relationships, including some motivating examples of how linear models are used, and demonstrations of data visualization methods from matplotlib. We then use descriptive statistics to quantify the shape of our data and use correlation to quantify the strength of linear relationships between two variables.

    Jouez Au Chapitre Maintenant
    Introduction to Modeling Data
    50 xp
    Reasons for Modeling: Interpolation
    100 xp
    Reasons for Modeling: Extrapolation
    100 xp
    Reasons for Modeling: Estimating Relationships
    100 xp
    Visualizing Linear Relationships
    50 xp
    Plotting the Data
    100 xp
    Plotting the Model on the Data
    100 xp
    Visually Estimating the Slope & Intercept
    100 xp
    Quantifying Linear Relationships
    50 xp
    Mean, Deviation, & Standard Deviation
    100 xp
    Covariance vs Correlation
    100 xp
    Correlation Strength
    100 xp
  2. 2

    Building Linear Models

    Here we look at the parts that go into building a linear model. Using the concept of a Taylor Series, we focus on the parameters slope and intercept, how they define the model, and how to interpret the them in several applied contexts. We apply a variety of python modules to find the model that best fits the data, by computing the optimal values of slope and intercept, using least-squares, numpy, statsmodels, and scikit-learn.

    Jouez Au Chapitre Maintenant
  3. 3

    Making Model Predictions

    Next we will apply models to real data and make predictions. We will explore some of the most common pit-falls and limitations of predictions, and we evaluate and compare models by quantifying and contrasting several measures of goodness-of-fit, including RMSE and R-squared.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

ensembles de données

Femur length versus body heightDistance hiked versus hike durationGalaxy distances versus recession velocitiesSea surface height versus yearMass versus volume of solution

collaborateurs

Collaborator's avatar
Nick Solomon
Collaborator's avatar
Adrián Soto
Jason Vestuto HeadshotJason Vestuto

Data Scientist, University of Texas at Austin

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Introduction to Linear Modeling in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.