Accéder au contenu principal
AccueilPython

Machine Learning for Marketing in Python

From customer lifetime value, predicting churn to segmentation - learn and implement Machine Learning use cases for Marketing in Python.

Commencer Le Cours Gratuitement
4 heures16 vidéos53 exercices12 581 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

The rise of machine learning (almost sounds like "rise of the machines"?) and applications of statistical methods to marketing have changed the field forever. Machine learning is being used to optimize customer journeys which maximize their satisfaction and lifetime value. This course will give you the foundational tools which you can immediately apply to improve your company’s marketing strategy. You will learn how to use different techniques to predict customer churn and interpret its drivers, measure, and forecast customer lifetime value, and finally, build customer segments based on their product purchase patterns. You will use customer data from a telecom company to predict churn, construct a recency-frequency-monetary dataset from an online retailer for customer lifetime value prediction, and build customer segments from product purchase data from a grocery shop.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Analyse marketing en Python

Aller à la piste
  1. 1

    Machine learning for marketing basics

    Gratuit

    In this chapter, you will explore the basics of machine learning methods used in marketing. You will learn about different types of machine learning, data preparation steps, and will run several end to end models to understand their power.

    Jouez Au Chapitre Maintenant
    Why use ML for marketing? Strategies and use cases
    50 xp
    Identify supervised learning examples
    50 xp
    Supervised vs. unsupervised learning
    100 xp
    Preparation for modeling
    50 xp
    Investigate the data
    100 xp
    Separate numerical and categorical columns
    100 xp
    Encode categorical and scale numerical variables
    100 xp
    ML modeling steps
    50 xp
    Split data to training and testing
    100 xp
    Fit a decision tree
    100 xp
    Predict churn with decision tree
    100 xp
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Analyse marketing en Python

Aller à la piste

ensembles de données

Telecom Dataset

collaborateurs

Collaborator's avatar
Adel Nehme
Karolis Urbonas HeadshotKarolis Urbonas

Head of Machine Learning and Science

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Machine Learning for Marketing in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.