Accéder au contenu principal
AccueilR

cours

Machine Learning in the Tidyverse

Intermédiaire
Updated 12/2024
Leverage tidyr and purrr packages in the tidyverse to generate, explore, and evaluate machine learning models.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

RMachine learning5 heures15 vidéos52 exercices4,300 XP15,090Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Welcome to the tidyverse! In this course, you will continue on your journey to learn the tidyverse and apply your knowledge to machine learning concepts.

This course is ideal if you’re looking to integrate R's Tidyverse tools into your machine learning workflows.

Evaluating machine learning models

Throughout this course, you will focus on leveraging the tidyverse tools in R to build, explore, and evaluate machine learning models efficiently.

The course begins by introducing the List Column Workflow (LCW), a method for managing multiple models within a single dataframe. It also covers using the broom package to tidy up and explore model outputs, making the complex results more interpretable.

Utilizing tidyr and purrr

Work through practical exercises including building and evaluating regression along with classification models. Explore techniques for tuning hyperparameters to optimize model performance.

You will use packages like tidyr and purrr to handle complex data manipulations and model evaluations, ensuring a tidy and systematic approach to machine learning.

Gain real-world application

Explore real-world examples through multiple case studies, such as using the gapminder dataset to predict life expectancy with linear models.

By the end of the course, you will have a strong foundation in applying Tidyverse principles to machine learning, enabling them to build, tune, and evaluate models efficiently in a tidy and reproducible manner.

Conditions préalables

Modeling with Data in the Tidyverse
1

Foundations of "tidy" Machine learning

Commencer le chapitre
2

Multiple Models with broom

Commencer le chapitre
3

Build, Tune & Evaluate Regression Models

Commencer le chapitre
4

Build, Tune & Evaluate Classification Models

Commencer le chapitre
Machine Learning in the Tidyverse
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Machine Learning in the Tidyverse Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.