Programming with dplyr
Learn how to perform advanced dplyr transformations and incorporate dplyr and ggplot2 code in functions.
Commencer Le Cours Gratuitement4 heures15 vidéos47 exercices2 750 apprenantsDéclaration de réalisation
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d'entreprises
Description du cours
The tidyverse includes a tremendous set of packages that make working with data simple and fast. But have you ever tried to put dplyr functions inside functions and been stuck with strange errors or unexpected results? Those errors were likely due to tidy evaluation, which requires a little extra work to handle. In Programming with dplyr, you’ll be equipped with strategies for solving these errors via the rlang package. You’ll also learn other techniques for programming with dplyr using data from the World Bank and International Monetary Fund to analyze worldwide trends throughout. You’ll be a tidyverse function writing ninja by the end of the course!
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.- 1
Hold Your Selected Leaders Accountable
GratuitIn this chapter, you'll revisit dplyr pipelines and enhance your column selection skills with helper functions and regular expressions.
- 2
Keep Them Dogies Movin’
Here, you'll learn how to move columns around in your data and perform the same transformation across multiple data columns. You'll also choose rows that match any or all column criteria.
Providing relocation assistance50 xpMoving with select() and everything()100 xpRearranging with select() and last_col()100 xpShifting positions with relocate()100 xpThat has crossed the line50 xpMutate across multiple columns100 xpSummarize across multiple variables100 xpCombining count() with across()100 xpAnimal crossing: new rowwise's50 xpacross() vs. c_across()50 xpAggregations with rowwise()100 xpOne for any, one for all100 xp - 3
Set Theory Claus and The North Pole
For this section, you'll revisit dplyr joins. You'll then take this further by using set theory clauses to examine overlaps and differences between datasets.
Join together for fun50 xpJoin with me100 xpFurther investigations100 xpLines that intersect are without parallel50 xpIntersect vs. inner join100 xpSpeeding through the intersection100 xpDeliver the state of the union50 xpSave the union100 xpSign up for your local union, all100 xpA little too excepting50 xpChecking for equal sets100 xpChecking for differences100 xp - 4
Speaking a New rlang-uage
In this final part of the course, you'll use rlang operators to turn arguments into variables and create functions that incorporate dplyr and ggplot2 code.
What is your major mal-function?50 xpUnemployment rates by region100 xpMedian unemployment rates by group100 xpBang-bang!!50 xpMatching rlang operators100 xpBang bang into the room100 xpRlang-ing in your rocking chair50 xpYou are the walrus100 xpAnalyze the region results100 xpA great ggplot twist50 xpPlotting and scheming100 xpThe plot title thickens100 xpCongratulations!50 xp
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.collaborateurs
Dr. Chester Ismay
Voir PlusEducator, Data Scientist, and R/Python Consultant
Qu’est-ce que les autres apprenants ont à dire ?
Inscrivez-vous 15 millions d’apprenants et commencer Programming with dplyr Aujourd’hui!
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.