Python for R Users
This course is for R users who want to get up to speed with Python!
Commencer Le Cours Gratuitement5 heures15 vidéos57 exercices14 375 apprenantsDéclaration de réalisation
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d'entreprises
Description du cours
Python and R have seen immense growth in popularity in the "Machine Learning Age". They both are high-level languages that are easy to learn and write. The language you use will depend on your background and field of study and work. R is a language made by and for statisticians, whereas Python is a more general purpose programming language. Regardless of the background, there will be times when a particular algorithm is implemented in one language and not the other, a feature is better documented, or simply, the tutorial you found online uses Python instead of R.
In either case, this would require the R user to work in Python to get his/her work done, or try to understand how something is implemented in Python for it to be translated into R. This course helps you cross the R-Python language barrier.
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.- 1
The Basics
GratuitLearn about some of the most important data types (integers, floats, strings, and booleans) and data structures (lists, dictionaries, numpy arrays, and pandas DataFrames) in Python and how they compare to the ones in R.
- 2
Control flow, Loops, and Functions
This chapter covers control flow statements (if-else if-else), for loops and shows you how to write your own functions in Python!
- 3
Pandas
In this chapter you will learn more about one of the most important Python libraries, Pandas. In addition to DataFrames, pandas provides several data manipulation functions and methods.
- 4
Plotting
You will learn about the rich ecosystem of visualization libraries in Python. This chapter covers matplotlib, the core visualization library in Python along with the pandas and seaborn libraries.
Plotting directly using pandas50 xpUnivariate plots in pandas100 xpBivariate plots in pandas100 xpSeaborn50 xpUnivariate plots in seaborn100 xpBivariate plots in seaborn100 xpFacet plots in seaborn100 xpMatplotlib50 xpUnivariate and bivariate plots in matplotlib100 xpSubfigures in matplotlib100 xpWorking with axes100 xpPolishing up a figure100 xp - 5
Capstone
As a final capstone, you will apply your Python skills on the NYC Flights 2013 dataset.
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.collaborateurs
Daniel Chen
Voir PlusData Science Consultant at Lander Analytics
Qu’est-ce que les autres apprenants ont à dire ?
Inscrivez-vous 15 millions d’apprenants et commencer Python for R Users Aujourd’hui!
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.