Accéder au contenu principal
AccueilPython

Reinforcement Learning from Human Feedback (RLHF)

Learn how to make GenAI models truly reflect human values while gaining hands-on experience with advanced LLMs.

Commencer Le Cours Gratuitement
4 heures13 vidéos38 exercices

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Combine the efficiency of Generative AI with the understanding of human expertise in this course on Reinforcement Learning from Human Feedback. You’ll learn how to make GenAI models truly reflect human values and preferences while getting hands-on experience with LLMs. You’ll also navigate the complexities of reward models and learn how to build upon LLMs to produce AI that not only learns but also adapts to real-world scenarios.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.
  1. 1

    Foundational Concepts

    Gratuit

    This chapter introduces the basics of Reinforcement Learning with Human Feedback (RLHF), a technique that uses human input to help AI models learn more effectively. Get started with RLHF by understanding how it differs from traditional reinforcement learning and why human feedback can enhance AI performance in various domains.

    Jouez Au Chapitre Maintenant
    Introduction to RLHF
    50 xp
    Text generation with RLHF
    100 xp
    Classifying generated text for RLHF
    100 xp
    RL vs. RLHF
    50 xp
    Exploring pre-trained LLMs
    50 xp
    Tokenize a text dataset
    100 xp
    Fine-tuning for review classification
    100 xp
    Preparing data for RLHF
    50 xp
    Preparing the preference dataset
    100 xp
    Extracting prompts
    50 xp
  2. 2

    Gathering Human Feedback

    Discover how to set up systems for gathering human feedback in this Chapter. Learn best practices for collecting high-quality data, from pairwise comparisons to uncertainty sampling, and explore strategies for enhancing your data collection.

    Jouez Au Chapitre Maintenant
  3. 3

    Tuning Models with Human Feedback

    In this Chapter, you'll get into the core of Reinforcement Learning from Human Feedback training. This includes exploring fine-tuning with PPO, techniques to train efficiently, and handling potential divergences from your metrics' objectives.

    Jouez Au Chapitre Maintenant
  4. 4

    Model Evaluation

    Explore key techniques for assessing and improving model performance in this last Chapter of Reinforcement Learning from Human Feedback (RLHF): from fine-tuning metrics to incorporating diverse feedback sources, you'll be provided with a comprehensive toolkit to refine your models effectively.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

collaborateurs

Collaborator's avatar
Francesca Donadoni

prérequis

Deep Reinforcement Learning in Python
Mina Parham HeadshotMina Parham

AI Engineer, Chubb

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Reinforcement Learning from Human Feedback (RLHF) Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.