Accéder au contenu principal
AccueilPython

Vector Databases for Embeddings with Pinecone

Discover how the Pinecone vector database is revolutionizing AI application development!

Commencer Le Cours Gratuitement
3 heures12 vidéos39 exercices

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Unlock the Power of Embeddings with Pinecone's Vector Database

In the introductory chapters, you'll delve into the fundamentals of Pinecone, understanding its core capabilities, benefits, and key concepts such as pods, indexes, and projects. Through hands-on lessons, you'll compare Pinecone with other vector databases, gaining insights into its unparalleled functionality and usability.

Python Interaction with Pinecone

Equip yourself with the skills to interact seamlessly with Pinecone using Python. Learn to differentiate between pod types, set up your environment, and configure the Pinecone Python client. You will dive into the heart of Pinecone by learning to create vector databases programmatically, understand the parameters influencing Pinecone index creation, including dimensionality, distance metrics, pod types, and replicas, and master the art of ingesting vectors with metadata into Pinecone indexes. You will develop proficiency in querying and retrieving vectors using Python, and gain insights into updating and deleting vectors to handle concept drift effectively.

Advanced Pinecone and AI Applications

Going beyond the fundamentals and explore advanced Pinecone concepts such as monitoring Pinecone performance, tuning for efficiency, and implementing multi-tenancy for access control. You will explore advanced applications, including semantic search engines built on Pinecone and integrating it with OpenAI API for projects like the RAG chatbot.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Ingénieur IA associé pour les développeurs

Aller à la piste
  1. 1

    Introduction to Pinecone

    Gratuit

    Explore the mechanics behind Pinecone's vector database, from pods and indexes to comparing it with other databases. Learn to differentiate pod types, acquire API keys, and initialise Pinecone connection using python. Finally, you’ll learn how to create Pinecone indexes, exploring different parameters such as dimensionality, distance metrics, pod types, and others.

    Jouez Au Chapitre Maintenant
    Introduction to Pinecone indexes
    50 xp
    Creating a Pinecone client
    100 xp
    Your first Pinecone index
    100 xp
    Managing indexes
    50 xp
    Connecting to an index
    100 xp
    Deleting an index
    100 xp
    The Pinecone ecosystem
    100 xp
    Vector ingestion
    50 xp
    Checking dimensionality
    100 xp
    Ingesting vectors with metadata
    100 xp
  2. 2

    Pinecone Vector Manipulation in Python

    Get hands-on with Pinecone in Python, where we explore the practical side of using Pinecone for managing indexes, adding vectors with metadata, searching and retrieving vectors, and making updates or deletions. Gain a solid grasp of the key functions and ideas to smoothly handle data in the Pinecone vector database.

    Jouez Au Chapitre Maintenant
  3. 3

    Performance Tuning and AI Applications

    In this chapter, learners delve into optimizing Pinecone index performance, leveraging multi-tenant namespaces for cost reduction, building semantic search engines, and creating retrieval-augmented question answering systems using Pinecone with the OpenAI API. Through these lessons, learners gain practical skills in performance tuning, semantic search, and retrieval-augmented question answering, empowering them to apply Pinecone effectively in real-world AI applications.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Ingénieur IA associé pour les développeurs

Aller à la piste

ensembles de données

YouTube TranscriptsStanford Question Answering Dataset (SQuAD)

collaborateurs

Collaborator's avatar
Chris Harper

audio enregistré par

James Chapman's avatar
James Chapman
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Vector Databases for Embeddings with Pinecone Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.