Vector Databases for Embeddings with Pinecone
Discover how the Pinecone vector database is revolutionizing AI application development!
Commencer Le Cours Gratuitement3 heures12 vidéos39 exercices
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d'entreprises
Description du cours
Unlock the Power of Embeddings with Pinecone's Vector Database
In the introductory chapters, you'll delve into the fundamentals of Pinecone, understanding its core capabilities, benefits, and key concepts such as pods, indexes, and projects. Through hands-on lessons, you'll compare Pinecone with other vector databases, gaining insights into its unparalleled functionality and usability.Python Interaction with Pinecone
Equip yourself with the skills to interact seamlessly with Pinecone using Python. Learn to differentiate between pod types, set up your environment, and configure the Pinecone Python client. You will dive into the heart of Pinecone by learning to create vector databases programmatically, understand the parameters influencing Pinecone index creation, including dimensionality, distance metrics, pod types, and replicas, and master the art of ingesting vectors with metadata into Pinecone indexes. You will develop proficiency in querying and retrieving vectors using Python, and gain insights into updating and deleting vectors to handle concept drift effectively.Advanced Pinecone and AI Applications
Going beyond the fundamentals and explore advanced Pinecone concepts such as monitoring Pinecone performance, tuning for efficiency, and implementing multi-tenancy for access control. You will explore advanced applications, including semantic search engines built on Pinecone and integrating it with OpenAI API for projects like the RAG chatbot.Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Ingénieur IA associé pour les développeurs
Aller à la piste- 1
Introduction to Pinecone
GratuitExplore the mechanics behind Pinecone's vector database, from pods and indexes to comparing it with other databases. Learn to differentiate pod types, acquire API keys, and initialise Pinecone connection using python. Finally, you’ll learn how to create Pinecone indexes, exploring different parameters such as dimensionality, distance metrics, pod types, and others.
- 2
Pinecone Vector Manipulation in Python
Get hands-on with Pinecone in Python, where we explore the practical side of using Pinecone for managing indexes, adding vectors with metadata, searching and retrieving vectors, and making updates or deletions. Gain a solid grasp of the key functions and ideas to smoothly handle data in the Pinecone vector database.
Retrieving vectors50 xpQuerying vs. fetching100 xpFetching vectors100 xpQuerying vectors50 xpReturning the most similar vectors100 xpChanging distance metrics100 xpMetadata filtering50 xpFiltering queries100 xpMultiple metadata filters100 xpUpdating and deleting vectors50 xpUpdating vector values100 xpUpdating vector metadata100 xpDeleting vectors100 xp - 3
Performance Tuning and AI Applications
In this chapter, learners delve into optimizing Pinecone index performance, leveraging multi-tenant namespaces for cost reduction, building semantic search engines, and creating retrieval-augmented question answering systems using Pinecone with the OpenAI API. Through these lessons, learners gain practical skills in performance tuning, semantic search, and retrieval-augmented question answering, empowering them to apply Pinecone effectively in real-world AI applications.
Batching upserts50 xpDefining a function for chunking100 xpBatching upserts in chunks100 xpBatching upserts in parallel100 xpMultitenancy and namespaces50 xpNamespaces100 xpQuerying namespaces100 xpSemantic search with Pinecone50 xpCreating and configuring a Pinecone index100 xpUpserting vectors for semantic search100 xpQuerying vectors for semantic search100 xpRAG chatbot with Pinecone and OpenAI50 xpUpserting YouTube transcripts100 xpBuilding a retrieval function100 xpRAG questions answering function100 xpCongratulations!50 xp
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Ingénieur IA associé pour les développeurs
Aller à la pistecollaborateurs
audio enregistré par
James Chapman
Voir PlusCurriculum Manager, DataCamp
Ryan Ong
Voir PlusLead Data Scientist
Qu’est-ce que les autres apprenants ont à dire ?
Inscrivez-vous 15 millions d’apprenants et commencer Vector Databases for Embeddings with Pinecone Aujourd’hui!
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.