Accéder au contenu principal
AccueilPython

Working with Geospatial Data in Python

This course will show you how to integrate spatial data into your Python Data Science workflow.

Commencer Le Cours Gratuitement
4 heures16 vidéos53 exercices13 942 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

A good proportion of the data out there in the real world is inherently spatial. From the population recorded in the national census, to every shop in your neighborhood, the majority of datasets have a location aspect that you can exploit to make the most of what they have to offer. This course will show you how to integrate spatial data into your Python Data Science workflow. You will learn how to interact with, manipulate and augment real-world data using their geographic dimension. You will learn to read tabular spatial data in the most common formats (e.g. GeoJSON, shapefile, geopackage) and visualize them in maps. You will then combine different sources using their location as the bridge that puts them in relation to each other. And, by the end of the course, you will be able to understand what makes geographic data unique, allowing you to transform and repurpose them in different contexts.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.
  1. 1

    Introduction to geospatial vector data

    Gratuit

    In this chapter, you will be introduced to the concepts of geospatial data, and more specifically of vector data. You will then learn how to represent such data in Python using the GeoPandas library, and the basics to read, explore and visualize such data. And you will exercise all this with some datasets about the city of Paris.

    Jouez Au Chapitre Maintenant
    Geospatial data
    50 xp
    Restaurants in Paris
    100 xp
    Adding a background map
    100 xp
    Introduction to GeoPandas
    50 xp
    Explore the Paris districts (I)
    100 xp
    Explore the Paris districts (II)
    100 xp
    The Paris restaurants as a GeoDataFrame
    100 xp
    Exploring and visualizing spatial data
    50 xp
    Visualizing the population density
    100 xp
    Using pandas functionality: groupby
    100 xp
    Plotting multiple layers
    100 xp
  2. 3

    Projecting and transforming geometries

    In this chapter, we will take a deeper look into how the coordinates of the geometries are expressed based on their Coordinate Reference System (CRS). You will learn the importance of those reference systems and how to handle it in practice with GeoPandas. Further, you will also learn how to create new geometries based on the spatial relationships, which will allow you to overlay spatial datasets. And you will further practice this all with Paris datasets!

    Jouez Au Chapitre Maintenant
  3. 4

    Putting it all together - Artisanal mining sites case study

    In this final chapter, we leave the Paris data behind us, and apply everything we have learnt up to now on a brand new dataset about artisanal mining sites in Eastern Congo. Further, you will still learn some new spatial operations, how to apply custom spatial operations, and you will get a sneak preview into raster data.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

ensembles de données

ParisMining

collaborateurs

Collaborator's avatar
Mari Nazary
Collaborator's avatar
Sara Billen
Joris Van den Bossche HeadshotJoris Van den Bossche

Open Source Software Developer; Core Developer of Pandas, GeoPandas and scikit-learn

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Working with Geospatial Data in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.