Accéder au contenu principal
AccueilArtificial Intelligence

Working with Llama 3

Explore the latest techniques for running the Llama LLM locally, fine-tuning it, and integrating it within your stack.

Commencer Le Cours Gratuitement
4 heures14 vidéos43 exercices2 969 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Learn to Use the Llama Large-Language Model (LLM)

What is the Llama LLM, and how can you use it to enhance your projects? This course will teach you about the architecture of Llama and its applications. It will also provide you with the techniques required to fine-tune and deploy the model for specific tasks, and to optimize its performance.

Understand the Llama Model and Its Applications

You’ll start with an introduction to the foundational concepts of Llama, learning how to interact with Llama models and exploring their general use cases. You'll also gain hands-on experience setting up, running, and performing inference using the llama-cpp-python library.

Learn to Fine-Tune and Deploy Llama Models

You'll explore dataset preprocessing, model fine-tuning with Hugging Face, and advanced optimization techniques for efficient performance. To wrap up the course, you'll implement a RAG system using Llama and LangChain.

Throughout the course, you'll engage with practical examples, including an example of creating a customer service bot, to reinforce your understanding of these concepts.

This is an ideal introduction to Llama for developers and AI practitioners. It explores the foundations of this powerful open-source LLM and how to apply it in real-world scenarios.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Ingénieur IA associé pour les scientifiques de données

Aller à la piste
  1. 1

    Understanding LLMs and Llama

    Gratuit

    The field of large language models has exploded, and Llama is a standout. With Llama 3, possibilities have soared. Explore how it was built, learn to use it with llama-cpp-python, and understand how to craft precise prompts to control the model's behavior.

    Jouez Au Chapitre Maintenant
    What is Llama?
    50 xp
    Loading and using Llama 3
    100 xp
    Parsing Llama 3 completion outputs
    100 xp
    Getting started with Llama
    50 xp
    More creative Llama completions
    100 xp
    Make a philosophy chatbot
    100 xp
    Prompt engineering Llama 3
    50 xp
    Make Llama speak like a pirate
    100 xp
    3-shot prompting with Llama
    100 xp
  2. 2

    Using Llama Locally

    Language models are often useful as agents, and in this Chapter, you'll explore how you can leverage llama-cpp-python's capabilities for local text generation and creating agents with personalities. You'll also learn about decoding parameters' impact on output quality. Finally, you'll build specialized inference classes for diverse text generation tasks.

    Jouez Au Chapitre Maintenant
  3. 3

    Finetuning Llama for Customer Service using Hugging Face & Bitext Dataset

    Language models are powerful, and you can unlock their full potential with the right techniques. Learn how fine-tuning can significantly improve the performance of smaller models for specific tasks. Dive into fine-tuning smaller Llama models to enhance their task-specific capabilities. Next, discover parameter-efficient fine-tuning techniques such as LoRA, and explore quantization to load and use even larger models.

    Jouez Au Chapitre Maintenant
  4. 4

    Creating a Customer Service Chatbot with Llama and LangChain

    LLMs work best when they solve a real-world problem, such as creating a customer service chatbot using Llama and LangChain. Explore how to customize LangChain, integrate fine-tuned models, and craft templates for a real-world use case, utilizing RAG to enhance your chatbot's intelligence and accuracy. This chapter equips you with the technical skills to develop responsive and specialized chatbots.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Ingénieur IA associé pour les scientifiques de données

Aller à la piste

collaborateurs

Collaborator's avatar
James Chapman

prérequis

Introduction to LLMs in Python
Imtihan Ahmed HeadshotImtihan Ahmed

Machine Learning Engineer

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Working with Llama 3 Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.