Deep Learning for Text with PyTorch
Discover the exciting world of Deep Learning for Text with PyTorch and unlock new possibilities in natural language processing and text generation.
Commencer Le Cours Gratuitement4 heures16 vidéos50 exercices3 831 apprenantsDéclaration de réalisation
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d'entreprises
Description du cours
Learn Text Processing Techniques
You'll dive into the fundamental principles of text processing, learning how to preprocess and encode text data for deep learning models. You'll explore techniques such as tokenization, stemming, lemmatization, and encoding methods like one-hot encoding, Bag-of-Words, and TF-IDF, using them with Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification.Get Creative with Text Generation and RNNs
The journey continues as you learn how Recurrent Neural Networks (RNNs) enable text generation and explore the fascinating world of Generative Adversarial Networks (GANs) for text generation. Additionally, you'll discover pre-trained models that can generate text with fluency and creativity.Build Powerful Models for Text Classification
Finally, you'll delve into advanced topics in deep learning for text, including transfer learning techniques for text classification and leveraging the power of pre-trained models. You'll learn about Transformer architecture and the attention mechanism and understand their application in text processing. By the end of this course, you'll have gained practical experience and the skills to handle complex text data and build powerful deep learning models.Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Apprentissage profond en Python
Aller à la pisteDévelopper de grands modèles linguistiques
Aller à la piste- 1
Introduction to Deep Learning for Text with PyTorch
GratuitThis chapter introduces you to deep learning for text and its applications. Learn how to use PyTorch for text processing and get hands-on experience with techniques such as tokenization, stemming, stopword removal, and more. Understand the importance of encoding text data and implement encoding techniques using PyTorch. Finally, consolidate your knowledge by building a text processing pipeline combining these techniques.
Introduction to preprocessing for text50 xpWord frequency analysis100 xpPreprocessing text100 xpEncoding text data50 xpOne-hot encoded book titles100 xpBag-of-words for book titles100 xpApplying TF-IDF to book descriptions100 xpIntroduction to building a text processing pipeline50 xpShakespearean language preprocessing pipeline100 xpShakespearean language encoder100 xp - 2
Text Classification with PyTorch
Explore text classification and its role in Natural Language Processing (NLP). Apply your skills to implement word embeddings and develop both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification using PyTorch, and understand how to evaluate your models using suitable metrics.
Overview of Text Classification50 xpEmbedding in PyTorch100 xpCategorizing text classification tasks100 xpConvolutional neural networks for text classification50 xpBuild a CNN model for text100 xpTrain a CNN model for text100 xpTesting the Sentiment Analysis CNN Model100 xpRecurrent neural networks for text classification50 xpBuilding an RNN model for text100 xpBuilding an LSTM model for text100 xpBuilding a GRU model for text100 xpEvaluation metrics for text classification50 xpEvaluating RNN classification models100 xpEvaluating the model's performance100 xpComparing models50 xp - 3
Text Generation with PyTorch
Venture into the exciting world of text generation and its applications in NLP. Understand how to leverage Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and pre-trained models for text generation tasks using PyTorch. Alongside, you'll learn to evaluate the performance of your models using relevant metrics.
Introduction to text generation50 xpCreating a RNN model for text generation100 xpText generation using RNN - Training and Generation100 xpGenerative adversarial networks for text generation50 xpBuilding a generator and discriminator100 xpTraining a GAN model100 xpPre-trained models for text generation50 xpText completion with pre-trained GPT-2 models100 xpLanguage translation with pretrained PyTorch model100 xpEvaluation metrics for text generation50 xpEvaluating pretrained text generation model100 xpUnderstanding text generation metrics50 xp - 4
Advanced Topics in Deep Learning for Text with PyTorch
Understand the concept of transfer learning and its application in text classification. Explore Transformers, their architecture, and how to use them for text classification and generation tasks. You will also delve into attention mechanisms and their role in text processing. Finally, understand the potential impacts of adversarial attacks on text classification models and learn how to protect your models.
Transfer learning for text classification50 xpTransfer learning using BERT100 xpEvaluating the BERT model100 xpTransformers for text processing50 xpCreating a transformer model100 xpTraining and testing the Transformer model100 xpAttention mechanisms for text processing50 xpCreating a RNN model with attention100 xpTraining and testing the RNN model with attention100 xpAdversarial attacks on text classification models50 xpAdversarial attack classification100 xpSafeguarding AI at PyBooks50 xpWrap-up50 xp
Formation de 2 personnes ou plus ?
Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.Dans les titres suivants
Apprentissage profond en Python
Aller à la pisteDévelopper de grands modèles linguistiques
Aller à la pisteensembles de données
Shakespeare Textcollaborateurs
audio enregistré par
Shubham Jain
Voir PlusData Scientist
Qu’est-ce que les autres apprenants ont à dire ?
Inscrivez-vous 15 millions d’apprenants et commencer Deep Learning for Text with PyTorch Aujourd’hui!
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.