Accéder au contenu principal
AccueilArtificial Intelligence

Deep Learning for Text with PyTorch

Discover the exciting world of Deep Learning for Text with PyTorch and unlock new possibilities in natural language processing and text generation.

Commencer Le Cours Gratuitement
4 heures16 vidéos50 exercices3 831 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Learn Text Processing Techniques

You'll dive into the fundamental principles of text processing, learning how to preprocess and encode text data for deep learning models. You'll explore techniques such as tokenization, stemming, lemmatization, and encoding methods like one-hot encoding, Bag-of-Words, and TF-IDF, using them with Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification.

Get Creative with Text Generation and RNNs

The journey continues as you learn how Recurrent Neural Networks (RNNs) enable text generation and explore the fascinating world of Generative Adversarial Networks (GANs) for text generation. Additionally, you'll discover pre-trained models that can generate text with fluency and creativity.

Build Powerful Models for Text Classification

Finally, you'll delve into advanced topics in deep learning for text, including transfer learning techniques for text classification and leveraging the power of pre-trained models. You'll learn about Transformer architecture and the attention mechanism and understand their application in text processing. By the end of this course, you'll have gained practical experience and the skills to handle complex text data and build powerful deep learning models.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Apprentissage profond en Python

Aller à la piste

Développer de grands modèles linguistiques

Aller à la piste
  1. 1

    Introduction to Deep Learning for Text with PyTorch

    Gratuit

    This chapter introduces you to deep learning for text and its applications. Learn how to use PyTorch for text processing and get hands-on experience with techniques such as tokenization, stemming, stopword removal, and more. Understand the importance of encoding text data and implement encoding techniques using PyTorch. Finally, consolidate your knowledge by building a text processing pipeline combining these techniques.

    Jouez Au Chapitre Maintenant
    Introduction to preprocessing for text
    50 xp
    Word frequency analysis
    100 xp
    Preprocessing text
    100 xp
    Encoding text data
    50 xp
    One-hot encoded book titles
    100 xp
    Bag-of-words for book titles
    100 xp
    Applying TF-IDF to book descriptions
    100 xp
    Introduction to building a text processing pipeline
    50 xp
    Shakespearean language preprocessing pipeline
    100 xp
    Shakespearean language encoder
    100 xp
  2. 3

    Text Generation with PyTorch

    Venture into the exciting world of text generation and its applications in NLP. Understand how to leverage Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and pre-trained models for text generation tasks using PyTorch. Alongside, you'll learn to evaluate the performance of your models using relevant metrics.

    Jouez Au Chapitre Maintenant
  3. 4

    Advanced Topics in Deep Learning for Text with PyTorch

    Understand the concept of transfer learning and its application in text classification. Explore Transformers, their architecture, and how to use them for text classification and generation tasks. You will also delve into attention mechanisms and their role in text processing. Finally, understand the potential impacts of adversarial attacks on text classification models and learn how to protect your models.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Apprentissage profond en Python

Aller à la piste

Développer de grands modèles linguistiques

Aller à la piste

ensembles de données

Shakespeare Text

collaborateurs

Collaborator's avatar
James Chapman
Collaborator's avatar
Maham Khan
Collaborator's avatar
Jasmin Ludolf
Collaborator's avatar
Chris Harper

audio enregistré par

Shubham Jain's avatar
Shubham Jain
Shubham Jain HeadshotShubham Jain

Data Scientist

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Deep Learning for Text with PyTorch Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.