Accéder au contenu principal
AccueilR

GARCH Models in R

Specify and fit GARCH models to forecast time-varying volatility and value-at-risk.

Commencer Le Cours Gratuitement
4 heures16 vidéos60 exercices7 610 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

Are you curious about the rhythm of the financial market's heartbeat? Do you want to know when a stable market becomes turbulent? In this course on GARCH models you will learn the forward looking approach to balancing risk and reward in financial decision making. The course gradually moves from the standard normal GARCH(1,1) model to more advanced volatility models with a leverage effect, GARCH-in-mean specification and the use of the skewed student t distribution for modelling asset returns. Applications on stock and exchange rate returns include portfolio optimization, rolling sample forecast evaluation, value-at-risk forecasting and studying dynamic covariances.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Finance appliquée en R

Aller à la piste
  1. 1

    The Standard GARCH Model as the Workhorse Model

    Gratuit

    We start off by making our hands dirty. A rolling window analysis of daily stock returns shows that its standard deviation changes massively through time. Looking back at the past, we thus have clear evidence of time-varying volatility. Looking forward, we need to estimate the volatility of future returns. This is essentially what a GARCH model does! In this chapter, you will learn the basics of using the rugarch package for specifying and estimating the workhorse GARCH(1,1) model in R. We end by showing its usefulness in tactical asset allocation.

    Jouez Au Chapitre Maintenant
    Analyzing volatility
    50 xp
    Computing returns
    100 xp
    Standard deviation on subsamples
    100 xp
    Roll, roll, roll
    100 xp
    The GARCH equation for volatility prediction
    50 xp
    GARCH(1,1) reaction to one-off shocks
    50 xp
    Prediction errors
    100 xp
    The recursive nature of the GARCH variance
    100 xp
    The rugarch package
    50 xp
    Specify and taste the GARCH model flavors
    100 xp
    Out-of-sample forecasting
    100 xp
    Volatility targeting in tactical asset allocation
    100 xp
  2. 2

    Improvements of the Normal GARCH Model

    Markets take the stairs up and the elevator down. This Wallstreet wisdom has important consequences for specifying a realistic volatility model. It requires to give up the assumption of normality, as well as the symmetric response of volatility to shocks. In this chapter, you will learn about GARCH models with a leverage effect and skewed student t innovations. At the end, you will be able to use GARCH models for estimating over ten thousand different GARCH model specifications.

    Jouez Au Chapitre Maintenant
  3. 3

    Performance Evaluation

    GARCH models yield volatility forecasts which serve as input for financial decision making. Their use in practice requires to first evaluate the goodness of the volatility forecast. In this chapter, you will learn about the analysis of statistical significance of the estimated GARCH parameters, the properties of standardized returns, the interpretation of information criteria and the use of rolling GARCH estimation and mean squared prediction errors to analyze the accuracy of the volatility forecast.

    Jouez Au Chapitre Maintenant
  4. 4

    Applications

    At this stage, you master the standard specification, estimation and validation of GARCH models in the rugarch package. This chapter introduces specific rugarch functionality for making value-at-risk estimates, for using the GARCH model in production and for simulating GARCH returns. You will also discover that the presence of GARCH dynamics in the variance has implications for simulating log-returns, the estimation of the beta of a stock and finding the minimum variance portfolio.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Finance appliquée en R

Aller à la piste

ensembles de données

Daily EUR/USD returnsDaily Microsoft returnsS&P 500 pricesS&P 500 returnsSimulated return data

collaborateurs

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Sara Billen
Collaborator's avatar
Chester Ismay
Kris Boudt HeadshotKris Boudt

Professor of Finance and Econometrics at VUB and VUA

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer GARCH Models in R Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.