Accéder au contenu principal
AccueilPython

cours

Spoken Language Processing in Python

Avancé
Updated 12/2024
Learn how to load, transform, and transcribe speech from raw audio files in Python.
Commencer le cours gratuitement

Inclus gratuitementPremium or Teams

PythonManipulation des données4 heures14 vidéos53 exercices4,400 XP7,364Déclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Learn Speech Recognition and Spoken Language Processing in Python

We learn to speak far before we learn to read. Even in the digital age, our main method of communication is speech. Spoken Language Processing in Python will help you load, transform, and transcribe audio files. You’ll start by seeing what raw audio looks like in Python, and move on to exploring popular libraries and working through an example business use case.

Use Python SpeechRecognition and PyDub to Transcribe Audio Files

Python has a number of popular libraries that help you to process spoken language. SpeechRecognition offers you an easy way to integrate with speech-to-text APIs, while PyDub helps you to programmatically alter audio file attributes to get them ready for transcription. Each of these libraries is covered in an in-depth chapter, offering you the opportunity to put theory into practice to cement your knowledge.

Practice Speech Transcription with an In-Course Project

The final chapter in this course offers you the opportunity to put everything you’ve learned together by building a speech processing proof of concept for a fictional technology company. You’ll build a system that transcribes phone call audio to text and then performs sentiment analysis to review customer support phone calls.

By the end of this course, you’ll have both the knowledge and hands-on experience to put your learning into practice within your job or personal projects.

Conditions préalables

Introduction to Natural Language Processing in PythonSupervised Learning with scikit-learn
1

Introduction to Spoken Language Processing with Python

Commencer le chapitre
2

Using the Python SpeechRecognition library

Commencer le chapitre
3

Manipulating Audio Files with PyDub

Commencer le chapitre
4

Processing text transcribed from spoken language

Commencer le chapitre
Spoken Language Processing in Python
Cours
terminé

Earn Déclaration de réalisation

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Inscrivez-vous 15 millions d’apprenants et commencer Spoken Language Processing in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.