Direkt zum Inhalt
StartseiteR

Categorical Data in the Tidyverse

Get ready to categorize! In this course, you will work with non-numerical data, such as job titles or survey responses, using the Tidyverse landscape.

Kurs Kostenlos Starten
4 Stunden13 Videos44 Übungen14.672 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

As a data scientist, you will often find yourself working with non-numerical data, such as job titles, survey responses, or demographic information. R has a special way of representing them, called factors, and this course will help you master working with them using the tidyverse package forcats. We’ll also work with other tidyverse packages, including ggplot2, dplyr, stringr, and tidyr and use real world datasets, such as the fivethirtyeight flight dataset and Kaggle’s State of Data Science and ML Survey. Following this course, you’ll be able to identify and manipulate factor variables, quickly and efficiently visualize your data, and effectively communicate your results. Get ready to categorize!
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Tidyverse Grundlagen mit R

Gehe zu Track
  1. 1

    Introduction to Factor Variables

    Kostenlos

    In this chapter, you’ll learn all about factors. You’ll discover the difference between categorical and ordinal variables, how R represents them, and how to inspect them to find the number and names of the levels. Finally, you’ll find how forcats, a tidyverse package, can improve your plots by letting you quickly reorder variables by their frequency.

    Kapitel Jetzt Abspielen
    Introduction to qualitative variables
    50 xp
    Recognizing factor variables
    100 xp
    Qualitative variables in theory
    50 xp
    Understanding your qualitative variables
    50 xp
    Getting number of levels
    100 xp
    Examining number of levels
    100 xp
    Examining levels
    100 xp
    Making better plots
    50 xp
    Reordering a variable by its frequency
    100 xp
    Ordering one variable by another
    100 xp
  2. 3

    Creating Factor Variables

    Having gotten a good grasp of forcats, you’ll expand out to the rest of the tidyverse, learning and reviewing functions from dplyr, tidyr, and stringr. You’ll refine graphs with ggplot2 by changing axes to percentage scales, editing the layout of the text, and more.

    Kapitel Jetzt Abspielen
  3. 4

    Case Study on Flight Etiquette

    In this final chapter, you’ll take all that you’ve learned and apply it in a case study. You’ll learn more about working with strings and summarizing data, then replicate a publication quality 538 plot.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Tidyverse Grundlagen mit R

Gehe zu Track

Datensätze

538 Flying Etiquette surveyKaggle multiple choice responses

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Emily Robinson HeadshotEmily Robinson

Senior Data Scientist, Game Data Pros

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Categorical Data in the Tidyverse Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.