Kurs
Einführung in Deep Learning mit PyTorch
Fortgeschrittener Anfänger
Updated 12.2024Kurs kostenlos starten
Kostenlos inbegriffenPremium or Teams
PyTorchKünstliche Intelligenz4 Stunden16 Videos48 Übungen3,850 XP33,823Leistungsnachweis
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Trainierst du 2 oder mehr?
Versuchen DataCamp for BusinessBeliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
Die Leistungsfähigkeit von Deep Learning
Deep Learning finden wir überall, ob in Smartphone-Kameras, in Sprachassistenten oder in selbstfahrenden Autos. Diese fortschrittliche Technologie konnte sogar bei der Entdeckung von Proteinstrukturen helfen und Menschen beim Go-Spiel schlagen. In diesem Kurs lernst du Deep Learning genauer kennen und erfährst, wie du es selbst einsetzen kannst, indem du dir PyTorch, eine der beliebtesten Deep-Learning-Bibliotheken, zunutze machst.Training deines ersten neuronalen Netzes
Zunächst befasst du dich mit dem Unterschied zwischen Deep Learning und „herkömmlichem“ maschinellen Lernen. Du schaust dir den Trainingsprozess eines neuronalen Netzes an und übst, eine Trainingsschleife zu schreiben. Dazu erstellst du Verlustfunktionen für Regressions- und Klassifikationsprobleme und nutzt PyTorch, um ihre Ableitungen zu berechnen.Evaluierung und Verbesserung deines Modells
In der zweiten Kurshälfte lernst du verschiedene Hyperparameter kennen, die du anpassen kannst, um dein Modell zu verbessern. Sobald du mit den verschiedenen Komponenten eines neuronalen Netzes vertraut bist, kannst du auch größere und komplexere Architekturen erstellen. Um die Leistung deines Modells zu messen, nutzt du TorchMetrics, eine PyTorch-Bibliothek zur Modellbewertung.Nach Abschluss des Kurses bist du in der Lage, mit PyTorch zu arbeiten, um Klassifikations- und Regressionsprobleme für tabellarische und bildbasierte Daten mit Deep Learning zu lösen. Diese wichtige Fähigkeit braucht jeder erfahrene Datenprofi für eine erfolgreiche Karriere!
Voraussetzungen
Supervised Learning with scikit-learnIntroduction to NumPyPython Toolbox1
Einführung in PyTorch, eine Deep-Learning-Bibliothek
2
Unser erstes neuronales Netz mit PyTorch trainieren
3
Architektur neuronaler Netze und Hyperparameter
4
Modelle evaluieren und verbessern
Einführung in Deep Learning mit PyTorch
Kurs abgeschlossen
Leistungsnachweis verdienen
Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzuTeilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung
Im Lieferumfang enthaltenPremium or Teams
Jetzt anmeldenMachen Sie mit 15 Millionen Lernende und starten Sie Einführung in Deep Learning mit PyTorch Heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.