Direkt zum Inhalt
StartseitePython

Experimental Design in Python

Implement experimental design setups and perform robust statistical analyses to make precise and valid conclusions!

Kurs Kostenlos Starten
4 Stunden14 Videos47 Übungen4.342 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Implement Experimental Design Setups

Learn how to implement the most appropriate experimental design setup for your use case. Learn about how randomized block designs and factorial designs can be implemented to measure treatment effects and draw valid and precise conclusions.

Conduct Statistical Analyses on Experimental Data

Deep-dive into performing statistical analyses on experimental data, including selecting and conducting statistical tests, including t-tests, ANOVA tests, and chi-square tests of association. Conduct post-hoc analysis following ANOVA tests to discover precisely which pairwise comparisons are significantly different.

Conduct Power Analysis

Learn to measure the effect size to determine the amount by which groups differ, beyond being significantly different. Conduct a power analysis using an assumed effect size to determine the minimum sample size required to obtain a required statistical power. Use Cohen's d formulation to measure the effect size for some sample data, and test whether the effect size assumptions used in the power analysis were accurate.

Address Complexities in Experimental Data

Extract insights from complex experimental data and learn best practices for communicating findings to different stakeholders. Address complexities such as interactions, heteroscedasticity, and confounding in experimental data to improve the validity of your conclusions. When data doesn't meet the assumptions of parametric tests, you'll learn to choose and implement an appropriate nonparametric test.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Zertifizierung verfügbar

Associate Data Scientist in Python

Gehe zu Track

Angewandte Statistik in Python

Gehe zu Track
  1. 1

    Experimental Design Preliminaries

    Kostenlos

    Building knowledge in experimental design allows you to test hypotheses with best-practice analytical tools and quantify the risk of your work. You’ll begin your journey by setting the foundations of what experimental design is and different experimental design setups such as blocking and stratification. You’ll then learn and apply visual and analytical tests for normality in experimental data.

    Kapitel Jetzt Abspielen
    Setting up experiments
    50 xp
    Non-random assignment of subjects
    100 xp
    Random assignment of subjects
    100 xp
    Experimental data setup
    50 xp
    Blocking experimental data
    100 xp
    Stratifying an experiment
    100 xp
    Which was stratified?
    50 xp
    Normal data
    50 xp
    Visual normality in an agricultural experiment
    100 xp
    Analytical normality in an agricultural experiment
    100 xp
  2. 2

    Experimental Design Techniques

    You'll delve into sophisticated experimental design techniques, focusing on factorial designs, randomized block designs, and covariate adjustments. These methodologies are instrumental in enhancing the accuracy, efficiency, and interpretability of experimental results. Through a combination of theoretical insights and practical applications, you'll acquire the skills needed to design, implement, and analyze complex experiments in various fields of research.

    Kapitel Jetzt Abspielen
  3. 3

    Analyzing Experimental Data: Statistical Tests and Power

    Master statistical tests like t-tests, ANOVA, and Chi-Square, and dive deep into post-hoc analyses and power analysis essentials. Learn to select the right test, interpret p-values and errors, and skillfully conduct power analysis to determine sample and effect sizes, all while leveraging Python's powerful libraries to bring your data insights to life.

    Kapitel Jetzt Abspielen
  4. 4

    Advanced Insights from Experimental Complexity

    Hop into the complexities of experimental data analysis. Learn to synthesize insights using pandas, address data issues like heteroscedasticity with scipy.stats, and apply nonparametric tests like Mann-Whitney U. Learn additional techniques for transforming, visualizing, and interpreting complex data, enhancing your ability to conduct robust analyses in various experimental settings.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Zertifizierung verfügbar

Associate Data Scientist in Python

Gehe zu Track

Angewandte Statistik in Python

Gehe zu Track

Datensätze

HR WellnessChemical ReactionsInvestment ReturnsChick WeightsMarketing Campaign ConversationAthletic PerformanceCustomer SatisfactionLoan Approval Yield

Mitwirkende

Collaborator's avatar
Dr. Chester Ismay
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Experimental Design in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.