Direkt zum Inhalt
StartseiteArtificial Intelligence

Deep Learning for Text with PyTorch

Discover the exciting world of Deep Learning for Text with PyTorch and unlock new possibilities in natural language processing and text generation.

Kurs Kostenlos Starten
4 Stunden16 Videos50 Übungen3.831 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Learn Text Processing Techniques

You'll dive into the fundamental principles of text processing, learning how to preprocess and encode text data for deep learning models. You'll explore techniques such as tokenization, stemming, lemmatization, and encoding methods like one-hot encoding, Bag-of-Words, and TF-IDF, using them with Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification.

Get Creative with Text Generation and RNNs

The journey continues as you learn how Recurrent Neural Networks (RNNs) enable text generation and explore the fascinating world of Generative Adversarial Networks (GANs) for text generation. Additionally, you'll discover pre-trained models that can generate text with fluency and creativity.

Build Powerful Models for Text Classification

Finally, you'll delve into advanced topics in deep learning for text, including transfer learning techniques for text classification and leveraging the power of pre-trained models. You'll learn about Transformer architecture and the attention mechanism and understand their application in text processing. By the end of this course, you'll have gained practical experience and the skills to handle complex text data and build powerful deep learning models.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Deep Learning in Python

Gehe zu Track

Entwicklung von großen Sprachmodellen

Gehe zu Track
  1. 1

    Introduction to Deep Learning for Text with PyTorch

    Kostenlos

    This chapter introduces you to deep learning for text and its applications. Learn how to use PyTorch for text processing and get hands-on experience with techniques such as tokenization, stemming, stopword removal, and more. Understand the importance of encoding text data and implement encoding techniques using PyTorch. Finally, consolidate your knowledge by building a text processing pipeline combining these techniques.

    Kapitel Jetzt Abspielen
    Introduction to preprocessing for text
    50 xp
    Word frequency analysis
    100 xp
    Preprocessing text
    100 xp
    Encoding text data
    50 xp
    One-hot encoded book titles
    100 xp
    Bag-of-words for book titles
    100 xp
    Applying TF-IDF to book descriptions
    100 xp
    Introduction to building a text processing pipeline
    50 xp
    Shakespearean language preprocessing pipeline
    100 xp
    Shakespearean language encoder
    100 xp
  2. 3

    Text Generation with PyTorch

    Venture into the exciting world of text generation and its applications in NLP. Understand how to leverage Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and pre-trained models for text generation tasks using PyTorch. Alongside, you'll learn to evaluate the performance of your models using relevant metrics.

    Kapitel Jetzt Abspielen
  3. 4

    Advanced Topics in Deep Learning for Text with PyTorch

    Understand the concept of transfer learning and its application in text classification. Explore Transformers, their architecture, and how to use them for text classification and generation tasks. You will also delve into attention mechanisms and their role in text processing. Finally, understand the potential impacts of adversarial attacks on text classification models and learn how to protect your models.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Deep Learning in Python

Gehe zu Track

Entwicklung von großen Sprachmodellen

Gehe zu Track

Datensätze

Shakespeare Text

Mitwirkende

Collaborator's avatar
James Chapman
Collaborator's avatar
Maham Khan
Collaborator's avatar
Jasmin Ludolf
Collaborator's avatar
Chris Harper

Audio aufgenommen von

Shubham Jain's avatar
Shubham Jain
Shubham Jain HeadshotShubham Jain

Data Scientist

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Deep Learning for Text with PyTorch Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.