Direkt zum Inhalt
StartseitePython

Kurs

End-to-End Machine Learning

Fortgeschrittener Anfänger
Updated 12.2024
Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models.
Kurs kostenlos starten

Kostenlos inbegriffenPremium or Teams

PythonMachine Learning4 Stunden16 Videos56 Übungen4,150 XP8,336Leistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen

Kursbeschreibung

Introduction to End-to-End Machine Learning

Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models with this comprehensive course. Through engaging, real-world examples and hands-on exercises, you'll learn to tackle complex data problems and build powerful ML models. By the end of this course, you'll be equipped with the skills needed to create, monitor, and maintain high-performing models that deliver actionable insights. Transform your machine learning expertise with this comprehensive, hands-on course and become an end-to-end ML pro!

Evaluate and Improve Your Model

Start by learning the essentials of exploratory data analysis (EDA) and data preparation - you'll clean and preprocess your data, ensuring it's ready for model training. Next, master the art of feature engineering and selection to optimize your models for real-world challenges; learn how to use the Boruta library for feature selection, log experiments with MLFlow, and fine-tune your models using k-fold cross-validation. Uncover the secrets of effective error metrics and diagnose overfitting, setting your models up for success.

Deploy and Monitor Your Model

You'll also explore the importance of feature stores and model registries in end-to-end ML frameworks. Learn how to deploy and monitor your model's performance over time using Docker and AWS. Understand the concept of data drift and how to detect it using statistical tests. Implement feedback loops, retraining, and labeling strategies to maintain your models' performance in the face of ever-changing data.

This course will equip you with practical skills directly applicable to a career as a data scientist or machine learning engineer, allowing you to design, deploy, and maintain models; crucial skills to leverage the business impact of machine learning solutions.

Voraussetzungen

Supervised Learning with scikit-learnMLOps Concepts
1

Design and Exploration

Kapitel starten
2

Model Training and Evaluation

Kapitel starten
3

Model Deployment

Kapitel starten
4

Model Monitoring

Kapitel starten
End-to-End Machine Learning
Kurs
abgeschlossen

Leistungsnachweis verdienen

Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzu
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung

Im Lieferumfang enthaltenPremium or Teams

Jetzt anmelden

Machen Sie mit 15 Millionen Lernende und starten Sie End-to-End Machine Learning Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.