Direkt zum Inhalt
StartseitePython

Extreme Gradient Boosting with XGBoost

Learn the fundamentals of gradient boosting and build state-of-the-art machine learning models using XGBoost to solve classification and regression problems.

Kurs Kostenlos Starten
4 Stunden16 Videos49 Übungen52.557 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Do you know the basics of supervised learning and want to use state-of-the-art models on real-world datasets? Gradient boosting is currently one of the most popular techniques for efficient modeling of tabular datasets of all sizes. XGboost is a very fast, scalable implementation of gradient boosting, with models using XGBoost regularly winning online data science competitions and being used at scale across different industries. In this course, you'll learn how to use this powerful library alongside pandas and scikit-learn to build and tune supervised learning models. You'll work with real-world datasets to solve classification and regression problems.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Überwachtes Machine Learning in Python

Gehe zu Track
  1. 1

    Classification with XGBoost

    Kostenlos

    This chapter will introduce you to the fundamental idea behind XGBoost—boosted learners. Once you understand how XGBoost works, you'll apply it to solve a common classification problem found in industry: predicting whether a customer will stop being a customer at some point in the future.

    Kapitel Jetzt Abspielen
    Welcome to the course!
    50 xp
    Which of these is a classification problem?
    50 xp
    Which of these is a binary classification problem?
    50 xp
    Introducing XGBoost
    50 xp
    XGBoost: Fit/Predict
    100 xp
    What is a decision tree?
    50 xp
    Decision trees
    100 xp
    What is Boosting?
    50 xp
    Measuring accuracy
    100 xp
    Measuring AUC
    100 xp
    When should I use XGBoost?
    50 xp
    Using XGBoost
    50 xp
  2. 2

    Regression with XGBoost

    After a brief review of supervised regression, you'll apply XGBoost to the regression task of predicting house prices in Ames, Iowa. You'll learn about the two kinds of base learners that XGboost can use as its weak learners, and review how to evaluate the quality of your regression models.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Überwachtes Machine Learning in Python

Gehe zu Track

Datensätze

Ames housing prices (preprocessed)Ames housing prices (original)Chronic kidney disease

Mitwirkende

Collaborator's avatar
Hugo Bowne-Anderson
Collaborator's avatar
Yashas Roy
Sergey Fogelson HeadshotSergey Fogelson

Head of Data Science, TelevisaUnivision

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Extreme Gradient Boosting with XGBoost Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.